نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه آزاد اسلامی واحد شهرضا، کدپستی: 8648146411، شهرضا - ایران

2 پژوهشکده‌ی رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

در کار حاضر اندازه‌گیری ایمپدیمتری یون اورانیل (+22UO) با استفاده از الکترود خمیر کربن مغناطیسی (MCPE) اصلاح شده با نانو ذرات مغناطیسی هیدروکسی آپاتیت (MNP/HAP) برای نخستین بار گزارش شده است. در این کار ابتدا نانوذرات مغناطیسی (MNP) سنتز شدند و سپس به روش هم‌رسوبی نانوذرات هیدروکسی آپاتیت (HAP) روی آن قرار داده شدند. در ادامه سطح الکترود MCPE با MNP/HAP اصلاح شد و الکترود اصلاح شده (MCPE/MNP/HAP) به منظور جمع‌آوری یون‌های +22UO از محلول آبی به کار گرفته شد. اصلاح الکترود و برهم‌­کنش آن با +22UO به روش‌های ولتامتری چرخه‌ای (CV) و مقاومت ظاهری الکتروشیمیایی (EIS) در حضور دو ردیاب -4/-3]6[Fe(CN) و Q2PBQ/H پی‌گیری شد. تغییرات مقاومت ظاهری الکتروشیمایی الکترود (ایمپدانس) نسبت به غلظت +22UO در حضور ردیاب‌های الکتروشیمایی به عنوان سیگنال تجزیه‌ای انتخاب شد. بهترین پاسخ‌های ایمپدیمتری برای الکترود اصلاح شده با 100 میکروگرم از MNP/HAP، بعد از پیش­ تغلیظ به مدت 30 دقیقه‌ در محلول +22UO با 7 PH و بعد از پیش­ تغلیظ به مدت 35 دقیقه‌ در محلول +22UO با 6 PH، به ترتیب برای ردیاب‌های -4/-3]6[Fe(CN) و Q2PBQ/H به دست آمد. کارایی روش ایمپدیمتری در اندازه‌گیری اورانیل با استفاده از این الکترود با رسم منحنی کالیبراسیون در محدوده غلظت 10-10×1 تا 4-10×4 مولار +22UO برای هر دو ردیاب در محلول آبی نشان داده شد. حد تشخیصی برابر با 11‑10×58/7 و 11‑10×12/9 مولار +22UO و انحراف استانداری برای غلظت 7-10×1 مولار +22UO، با 5 بار تکرار، برابر با 82/0‌% و 05/1‌% به ترتیب برای ردیاب‌های -4/-3]6[Fe(CN) و Q2PBQ/H به روش ایمپدیمتری به­ دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Impedimetric Determination of Uranyl Based on a Modified Electrode by Magnetic Hydroxyapatite Nanocomposite

نویسندگان [English]

  • P. Fadai 1
  • M. Bagherzadeh 2

1 Department of Chemistry, Faculty of Science, Islamic Azad University of Shahreza, Postal Code: 8648146411, Shahreza - Iran

2 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran - Iran

چکیده [English]

Herein, impedimetric determination of uranyl ions (UO22+) by using a modified magnetically carbon paste electrode (MCPE) with hydroxyapatite magnetic nanoparticles (MNP/HAP) was reported for the first time. Firstly, magnetic nanoparticles were synthesized and then hydroxyapatite nanoparticles were precipitated on them via the chemical precipitation method. After that, the MCPE electrode was modified by MNP/HAP to collect UO22+ from an aqueous solution. Modification of the electrode and its interaction with UO22+ ions were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in the presence of a Fe[(CN)6]3-/4- and PBQ/H2Q, as a redox probe. Electrochemical impedance change against the concentration of UO22+ ions in the presence of electrochemical probes was selected as an analytical signal of this procedure. Optimized response for modified electrode with 100 µg MNP/HAP was observed after preconcentration of UO22+ for 30 min at pH 7, and for 35 min at pH 6 for Fe[(CN)6]3-/4- and PBQ/H2Q as a redox probe, respectively. The applicability of the impedimetric method in the determination of uranyl by using the proposed electrode was shown by drawing a linear calibration curve in the concentration range between 1×10-10 to 4×10-4 M of UO22+ in the presence of both probes. Detection limits as 7.58×10-11 M and 9.12×10-11 M and relative standard deviation (RSD) for n = 5 as %0.82 and % 1.05 were observed for Fe[(CN)6]3-/4- and PBQ/H2Q as a redox probe, respectively.

کلیدواژه‌ها [English]

  • Impedimetry
  • Determination of UO22+
  • Magnetic nanoparticles
  • Hydroxyapatite
  1. Stephan, An introduction to electrochemical corrosion testing for practicing Engineers & Scientists. Wisconsin: Pair O Docs Professionals L.L.C. 1994; 1-6.

 

  1. Janata J. Electrochemical sensors and their impedances: A tutorial. Crit. Rev. Anal. Chem. 2002;32:109-120.

 

  1. Shervedani R.K, Mehrjardi A.H, Zamiri N, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Biochim-US. 2006;69:201-208.

 

  1. Shervedani R.K, Bagherzadeh M. Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sens. Actuat. B. 2009;139:657-664.

 

  1. Shervedani R.K, Bagherzadeh M, Sabzian H. One-impedance for one-concentration impedimetry as an electrochemical method for determination of the trace zirconium ion. J. Elctronal. Chem. 2009;633:259-263.

 

  1. Mazloum-Ardakani M, Manshadi A.D, Bagherzadeh M, Kargar H. Impedimetric and Potentiometric Investigation of a Sulfate Anion-Selective Electrode: Experiment and Simulation. Anal. Chem. 2012;84:2614-2621.

 

  1. Shervedani R.K, Mozaffari S.A, Impedimetric sensing of uranyl ion based on phosphate functionalized cysteamine self-assembled monolayers. Anal. Chimica. Acta. 2006;562:223-228.

 

  1. Zouridakis N, Ochsenkühn K.M, Savidou A. Determination of uranium and radon in potable water samples. J. Environ. Radioactiv. 2002;61:225-232.

 

  1. Brina R. Uranium removal from contaminated water by enzymatic reduction with kinetic phosphorimetry detection. Am. Lab. 1995;27:43-47.

 

  1. Ejnik J.W, Hamilton M.M, Adams P.R, Carmichael A.J. Optimal sample preparation conditions for the determination of uranium in biological samples by kinetic phosphorescence analysis (KPA). J. Pharamacent. Biomed. 2000;24:227-235.

 

  1. Ethington E.F, Niswonger K.R, Alpha spectrometry measurement reproducibility study for uranium, plutonium, and americium in water at Rocky Flats. Environ. Technol. 2000;79:38-40.

 

  1. Salonen L. A rapid method for monitoring of uranium and radium in drinking water. Sci. Total. Environ. 1993;130:23-35.

 

  1. Karpas Z, Halicz L, Roiz J, Marko R, Katorza E, Lorber A, Golbart Z. Inductively coupled plasma mass spectrometry as a simple, rapid, and inexpensive method for determination of uranium in urine and fresh water: comparison with LIF. Health. Phys. 1996;71:879-885.

 

  1. Xiong W, Peng J, Hu Y. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite. J. Colloid Interf. Sci. 2012;368:528-532.

 

  1. Skwarek E. Gładysz-Płaska A, Choromańska J.B, Broda E. Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption. 2019;25(3):639–647.

 

  1. Wu Y, Chen D, Kong L, Tsang D.C, Su M. Rapid and effective removal of uranium(VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. J. Hazard. Mater. 2019;371:397–405.

 

  1. Bagherzadeh M, Saberi D. Magnetically assisted uranyl removal by using magnetic hydroxyapatite nanocomposite. J. Nuclear Sci. Tech. 2022;101(4):103-112.

 

  1. Bagherzadeh M, Pirmoradian M, Riahi F. Electrochemical detection of Pb and Cu by using DTPA functionalized magnetic nanoparticles. Electrochim. Acta. 2014;115:573-580.

 

  1. Wu L, Forsling W, Schindler P.W. Surface complexation of calcium minerals in aqueous solution. 1. Surface protonation of fluorapatite–water interfaces. J. Coll. Interface Sci.1991;147:178–185.

 

  1. Krestou A, Xenidis A, Panias D. Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Minr. Eng. 2004;17:373-381.

 

  1. Reichert J, Binner J.G.P. An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. J. Mater. Sci. 1996;31:1231-1241.

 

  1. Becker A, Tobias H, Mandler D. Electrochemical Determination of Uranyl Ions Using a Self-Assembled Monolayer. Anal. Chem. 2009;81(20):8627–8631.

 

  1. Peled Y, Krent E, Tal N, Tobias H, Mandler D. Electrochemical Determination of Low Levels of Uranyl by a Vibrating Gold Microelectrode. Anal. Chem. 2015;87(1):768–776.

 

  1. Akl Z.F. Electrochemical Selective Determination of Uranyl Ions Using PVC Membrane Sensor. Electroanalusis. 2017;29:1459-1468.

 

  1. Shi S, Wu H, Zhang L, Xiong P, Chen D, Chen L, Xu J, Qin Z, Liao J. Cloud point extraction associated with differential pulse voltammetry: preconcentration and determination of trace uranyl in natural water. Analyst. 2022;147:645-651.

 

  1. Cao C, Liu J, Tang S, Dai Z, Xiao F, Rang W, Liu L, Chen T, Yuan Y, Li L. Amplified electrochemical determination of UO22+ based on the cleavage of the DNAzyme and DNA-modified gold nanoparticle network structure. Microchim Acta. 2020;187:311.

 

  1. Chehreghani M, Najafi M. Electrochemical determination of uranyl ion using a graphene paste electrode. J. Applied Chem. 2019;14:239-250.

 

  1. He L.-Q, Wang Z.M, Li Y.J, Yang J, Liao L.F, Xiao X.L, Liu Y. A Novel Electrochemical Sensor Modified with a Computer-Simulative Magnetic Ion-Imprinted Membrane for Identification of Uranyl Ion. Sensors. 2022;22:1-19.

 

  1. Chen L, Liu J, Cao C, Tang S, Lv C, Xiao X, Yang S, Liu L, Sun L, Zhu B, Li L. Dual-signal amplification electrochemical sensing for the sensitive detection of uranyl ion based on gold nanoparticles and hybridization chain reaction-assisted synthesis of silver nanoclusters. Anal. Chimica Acta. 2021;1184(1):338986.

 

  1. Yun W, Jiang J, Cai D, Wang X, Sang G, Liao J, Lu T, Yan K. Ultrasensitive electrochemical detection of UO22+ based on DNAzyme and isothermal enzyme-free amplification. RSC Adv. 2016;6:3960-3966.

 

  1. Kefala G, Economou A, Voulgaropoulos A. Adsorptive Stripping Voltammetric Determination of Trace Uranium with a Bismuth-Film Electrode Based on the U(VI)→U(V) Reduction Step of the Uranium-Cupferron Complex. Electroanalysis. 2006;18(3):223-230.

 

  1. Güney S, Güney O. A novel electrochemical sensor for selective determination of uranyl ion based on imprinted polymer sol–gel modified carbon paste electrode. Sens. Actuat. B. 2016;231:45-53.