نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

2 گروه مهندسی هسته‌ای، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران، صندوق پستی: 775-14515، تهران-ایران

چکیده

با توجه به اهمیت حذف یون استرانسیم موجود در پساب‌­های هسته­ای، در کار حاضر ضمن سنتز لیگاندهای هیدروکسی بنزآلدهید پروپیل تری اتوکسی سیلان (Si-HL3(EtO)) و پیریدیل متیلیدین پروپیل تری اتوکسی سیلان (Si-L3(EtO)) به بررسی خصوصیات نانو ذرات سیلیکای اصلاح ­شده با این لیگاندها به ­عنوان جاذب جامد در حذف یون استرانسیم از محلول آبی پرداخته شد و پارامترهایی مانند pH، زمان، جرم جاذب، دما و یون‌­های مزاحم مورد آزمایش قرار گرفت. بررسی رفتار جذبی جاذ­ب‌­ها نشان داد با اصلاح سطح نانو جاذب توانایی آن در جذب یون استرانسیم در 6pH= از 31/6‌% به 86‌% و 11/22‌% به ترتیب با استفاده از لیگاندهای Si-HL3(EtO) و Si-L3(EtO) افزایش می‌­یابد. نتایج ایزوترم‌­ها و سینتیک­‌های جذب نشان داد که فرایند این جذب از ایزوترم لانگ­مویر و مدل شبه درجه دوم تبعیت می‌­کند. هم‌­چنین مقادیر به دست آمده از پارامترهای ترمودینامیکی نشان داد که حذف استرانسیم از محلول آبی یک فرایند گرماگیر و مقادیر مثبت آنتروپی نیروی محرکه فرایند جذب است.

کلیدواژه‌ها

عنوان مقاله [English]

Improvement of strontium ion adsorption by using N and NO type complexing agents deposited on SiO2

نویسندگان [English]

  • Z. Shiri-Yekta 1
  • S.J. Hoseini 2
  • M. Rahghoshay 2

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran

2 Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, P. O. Box: 14515-775, Tehran-Iran

چکیده [English]

Due to the importance of removing strontium ions in nuclear wastes, in the present work, while synthesizing hydroxybenzaldehyde propyltriethoxysilane ((EtO)3Si-HL) and pyridylmethylidene propyltriethoxysilane ((EtO)3Si-L) ligands, we investigated the properties of silica nanoparticles modified with these ligands as solid adsorbents in The removal of strontium ion from the aqueous solution was investigated and parameters such as pH, time, the mass of adsorbent, temperature, and interfering ions were tested. The adsorption behavior of the adsorbents showed that by modifying the surface of the nano adsorbent, the ability of the adsorbents to adsorb strontium ion at pH=6 increased from 6.31% to 86% and 22.11% using the (EtO)3Si-HL and (EtO)3Si-L ligands, respectively. The results of isotherms and adsorption kinetics indicate that the adsorption process follows the Longmuir isotherm and the pseudo-second-order model, respectively. Also, thermodynamic parameters show that strontium removal from the aqueous solution is an endothermic process. The positive entropy values are the driving force behind the adsorption process.

کلیدواژه‌ها [English]

  • Strontium
  • Nano silica
  • Hydroxybenzaldehyde propyltriethoxysilane ligand
  • Adsorbent modification
  1. Colarusso P. High-Resolution Infrared Emission Spectrum of Strontium Monofluoride. J. Mol. Spectrosc. 1996;175:158-171.

 

  1. Chakraborty D, Maji S, Bandyopadhyay A, Basu S. Biosorption of Cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol. 2007;98:2949-2952.

 

  1. Heidari A, Younesi H, Mehraban Z. Removal of Ni(II), Cd(II) and Pb(II) from a ternary aqueous solution by aminofunctionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009;153:70-79.

 

  1. Cheira MF, Orabi AS, Atia BM, Hassan SM. Solvent extraction and separation of thorium(IV) from chloride media by a Schiff base. J. Solution Chem. 2018;47:611-633.

 

  1. Zhu Z, Pranolo Y, Cheng CY. Uranium solvent extraction and separation from vanadium in alkaline solutions. Sep. Sci. Technol. 2013;48:1402-1408.

 

  1. Ang KL, Li D, Nikoloski AN. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins. Hydrometallurgy. 2017;174:147-155.

 

  1. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J. environ. Manage. 2011;92:407-418.

 

  1. Borai EH, Ahmed IM, Shahr El-Din AM, Abd El-Ghany MS. Development of selective separation method for thorium and rare earth elements from monazite liquor. J. Radioanal. Nucl. Chem. 2018;316:443–450.

 

  1. Nilchi A, Rasouli Garmarodi S, Shariati Dehaghan T. Sorption of Uranium(VI) and Thorium(IV) Ions from Aqueous Solutions by Nano Particle of Ion Exchanger SnO2. J. Nucl. Sci. Technol. 2012;60:15-21 [In Persian].

 

  1. Nilchi A, Shiri-Yekta Z, Faeghi R. Comparison of Adsorption Ability of Firoozkooh and Tabriz Natural Nano-Zeolites for the Removal of Thorium and Uranium Ions from an Aqueous Solution. Nashrieh Shimi va Mohandesi Shimi Iran. 2018;37:63-76 [In Persian].

 

  1. Kamalesh S, Debojyoti M, Priyanka D, Arghadip M, Mondal KN. Adsorption of uranium(VI) from groundwater by silicon containing biochar supported iron oxide nanoparticle. Bioresour. Technol. Rep. 2021;14:100659-100666.

 

  1. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke AT. Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for 90Sr mobility at contaminated nuclear sites. Appl. Geochem. 2012;27:1482-1491.

 

  1. Inan S, Altas Y. Preparation of zirconium-manganese oxide/polyacrylonitrile (Zr-Mn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental design. Chem. Eng. J. 2011;168:1263-1271.

 

  1. Yusan S, Erenturk S. Adsorption characterization of strontium on PAN/Zeolite composite adsorbent. World J. Nuclear Sci. Technol. 2011;1:6-12.

 

  1. Song D, Park SJ, Kang HW, Park SB, Han JI. Recovery of Lithium(I), Strontium(II) and Lanthanum(III) using Ca-alginate beads. J. Chem. Eng. Data. 2013;58:2455–2464.

 

  1. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: a new inorganic ion exchanger. J. Radioanal. Nucl. Chem. 2014;299:1701–1707.

 

  1. Zhang N, Liu S, Jiang L, Luo M, Chi C, Ma J. Adsorption of strontium from aqueous solution by silica mesoporous SBA-15. J. Radioanal. Nucl. Chem. 2015;303:1671–1677.

 

  1. Bhosle SM, Ponra Thnam S, Tambe SS, Chavan NN. Adsorption of strontium(II) metal ions using phosphonate-functionalized polymer. Bull. Mater. Sci. 2016;39:1541–1556.

 

  1. Tu YZ, You CF, Zhang Z, Duan Y, Fu J, Xu D. Strontium removal in seawater by means of composite magnetic nanoparticles derived from industrial sludge. Water. 2016;8:357-368.

 

  1. Sid Kalal H, Khanchi AR, Nejatlabbaf M, Almasian MR, Saberyan K, Taghiof M. The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions. Adv. Environ. Res. 2017;6:301-315.

 

  1. Kaygun K, Earl M, Erenturk SA. Removal of cesium and strontium using natural attapulgite: Evaluation of adsorption isotherm and thermodynamic data. J. Radioanal. Nucl. Chem. 2017;311:1459–1464.

 

  1. Huang Y, Wang W, Feng Q, Dong F. Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: Kinetic, equilibrium, and hermodynamic studies. J. Saudi Chem. Soc. 2017;21:58–66.

 

  1. Shameem H, Iasir ARM, Ghosh TK, Gupta BS, Prelas MA. Characterization and Adsorption Behavior of Strontium from Aqueous Solutions onto Chitosan-Fuller’s Earth Beads. Healthcare. 2019;7:2- 69.

 

  1. Abdollahi T, Towfighi J, Rezaei-Vahidian H. Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ. Technol. Innov. 2020;17:100592-100601.

 

  1. Kaur A, Gupta U. Application of 1-(2-Pyridylazo)-2-naphthol Anchored SiO2 Nanoparticles for the Preconcentration of Trace Pb2+ from Different Water and Food Samples. Chin. J. Chem. 2009;27:1833-1838.

 

  1. Zeeb M, Farahani H. Application of a Magnetic Multi-Wall Carbon Nanotube Sorbent for Extraction and Determination of Vanadium in Environmental Water Samples. Nashrieh Shimi va Mohandesi Shimi Iran. 2019;38:31-42 [In Persian].

 

  1. Asadi M, Azordeh S. Removal of Heavy Metals Pb2+ and Cd2+ from Water with Nano-Porous Materials. Nashrieh Shimi va Mohandesi Shimi Iran. 202;39:13-23 [In Persian].

 

  1. Aghayan H, Yavari R, Ghasemi Mobtaker H, Yousefi T. Studies on the adsorption behavior of uranium onto a synthesized hybrid material based on the spherical SBA-15 and tin tungstomolybdophosphate. J. Nucl. Sci. Technol. 2019;88:72-83 [In Persian].

 

  1. Manouchehri P, Milani SA, Abolghasemi H. Use of response surface methodology for optimizing process parameters of thorium adsorption on amino-functionalized titanosilicate nanoparticles. J. Nucl. Sci. Technol. 2021;95:57-66 [In Persian].

 

  1. Kaur A, Gupta U. Application of 1-(2-Pyridylazo)-2-naphthol Anchored SiO2 Nanoparticles for the Preconcentration of Trace Pb2+ from Different Water and Food Samples. Chin. J. Chem. 2009;27:1833-1838.

 

  1. Kaur A, Gupta U. Preconcentration of Nickel Using Chemically Modified Silica Nanoparticles. Eurasian J. Anal. Chem. 2009;4:175-183.

 

  1. Kaur A, Gupta U. Preconcentration of Zinc and Manganese using 1-(2-pyridylazo)-2-naphthol Anchored SiO2 Nanoparticles. Eurasian J. Anal. Chem. 2009;4:234-244.

 

  1. Afkhami A, Tehrani MS, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination. 2010;263:240-248.

 

  1. Shiri-Yekta Z, Yaftian MR, Nilchi A. Silica nanoparticles modified with a Schiff base ligand: An efficient adsorbent for Th(IV), U(VI) and Eu(III) ions. Korean J. Chem. Eng. 2013;30:1644-1651.

 

  1. Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R. Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess biosyst. Eng. 2016;39:1899-1911.

 

  1. Elboughdiri N. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Eng. 2020;7:1-13.

 

  1. El-Sofany EA. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J. Hazard. Mater. 2008;153:948-954.

 

  1. Kuo CY, Lin HY. Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment. Desalination. 2009;249:792-796.

 

  1. Salam MA. Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies. J. Alloys Compd. 2010;500:87-92.

 

  1. Baybas D, Ulusoy U. The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl. Clay Sci. 2011;51:138-146.

 

  1. Tofighy MA, Mohammadi T. Permanent hard water softening using carbon nanotube sheets. Desalination. 2011;268:208-213.

 

  1. Anirudhan T, Jalajamony S. Ethyl thiosemicarbazide intercalated organophilic calcined hydrotalcite as a potential sorbent for the removal of uranium(VI) and thorium(IV) ions from aqueous solutions. J. Environ. Sci. 2013;25:717-725.

 

  1. Ho Y, Porter J, McKay G. Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems. Water Air Soil Pollut. 2002;141:1-33.

 

  1. Sangabi F, Sangi MR, Bagheri B. Study of Thermodynamic Parameters in Adsorption of Lead, Copper and Cadmium Metal Ions by Plant Sorbents. AmirKabir Jounrnal of Science & Research Civil and Enviromental Engineering. 2015;47:9-18 [In Persian].