نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پلاسما پژشکی، دانشکده فیزیک، دانشگاه خوارزمی، صندوق پستی: ، تهران – ایران

2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران

چکیده

سازوکار رایج شتاب‌د‌هی لیزری پروتون، شتاب‌دهی با میدان غلافی از پشت هدف (TNSA) است. در این کار هندسه هدف آلومینیمی به کار رفته در برهم‌کنش پالس لیزر شدت بالا با پلاسما مورد مطالعه و بررسی قرار گرفته است. هدف، با نمایه پشتی پله‏‌ای و نمایی با طول مقیاس‏ه‌ای متفاوت تا μm 0/85 به عنوان ورودی در کد شبیه‌‏سازی دو بعدی ذره‏ای به کار رفته و نتایج توزیع انرژی پروتونی آن‏ها با هم مقایسه شده‏‌اند. نتایج نشان می‌‏دهد با تغییرات هموار پشت هدف، انرژی پروتونی کاهش یافته و این امر به علت کاهش دامنه میدان الکتروستاتیکی در پشت هدف است. به علاوه، یک طول مقیاس آستانه وجود دارد که با افزایش بیش‌تر این کمیت، انرژی پروتونی تغییر نکرده و توزیع انرژی‏‌های باریکه پروتون تقریباً بر هم منطبق می‌‏شوند. انتشار میدان عرضی لیزر و توزیع انرژی الکترونی یکسان برای دو هدف با سطح پشتی پله‌‏ای و نمایی با طول مقیاس μm 0/67 نیز مشاهده شد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the effect of target density profile in proton laser acceleration

نویسندگان [English]

  • A. Hasan Beigi 1
  • F. Azizian 1
  • M.J. Jafari 2
  • S. Rezaei 2

1 Department of Plasma Medicine, Faculty of Physics, Kharazmi University, P.O.Box: , Tehran - Iran

2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran - Iran

چکیده [English]

The common mechanism of proton laser acceleration is Target Normal Sheath acceleration. This study investigates the geometry of the aluminum target used in high-intensity laser pulse interaction with plasma. The target with an exponential profile on the front and back sides and with different scale lengths from 0 to 0.85 μm is used as an input to the two-dimensional particle simulation code. The results of their proton energy distribution have been compared. It was found that proton energy decreased with smooth changes behind the target. This is due to the reduction in the electrostatic field amplitude behind the target. In addition, there is a threshold scale length (here 67/0 μm), after which the proton energy does not change with the increase of this quantity and the energy distribution of the proton beam almost overlaps. The transverse laser field emission and the same electron energy distribution were also observed for two targets with zero and 0.67 μm scale lengths.

کلیدواژه‌ها [English]

  • Proton cut off energy
  • Laser acceleration of proton
  • Rear target profile
  1. Snavely R.A, Key M.H, Hatchett S.P, Cowan T.E, Roth M, Phillips T.W, Stoyer M.A, Henry E.A, Sangster T.C, Singh M.S, Wilks S.C, MacKinnon A, Offenberger A, Pennington D.M, Yasuike K, Langdon A.B, Lasinski B.F, Johnson J, Perry M.D, Campbell E.M. Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters. 2000;85(14):2945.

 

  1. Patel P.K, Mackinnon A.J, Key M.H, Cowan T.E, Foord M.E, Allen M, Price D.F, Ruhl H, Springer P.T, Stephens R. Isochoric heating of solid-density matter with an ultrafast proton beam. Physical Review Letters. 2003;91(12):125004.

 

  1. McKenna P, Ledingham K.W.D, Shimizu S, Yang J.M, Robson L, McCanny T, Galy J, Magill J, Clarke R.J, Neely D, Norreys P.A, Singhal R.P, Krushelnick K, Wei M.S. Broad energy spectrum of laser-accelerated protons for spallation-related physics. Physical Review Letters. 2005;94(8):084801.

 

  1. Roth M, Cowan T.E, Key M.H, Hatchett S.P, Brown C, Fountain W, Johnson J, Pennington D.M, Snavely R.A, Wilks S.C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S.V, Campbell E.M, Perry M.D, Powell1 H. Fast ignition by intense laser-accelerated proton beams. Physical Review Letters. 2001;86(3):436.

 

  1. Bulanov S, Khoroshkov V. Feasibility of using laser ion accelerators in proton therapy. Plasma Physics Reports. 2002;28(5).

 

  1. Roth M, Schollmeier M. Ion acceleration-target normal sheath acceleration. ArXiv Preprint ArXiv. 2017;1705;10569.

 

  1. Mora P. Plasma expansion into a vacuum. Physical Review Letters, 2003;90(18):185002.

 

  1. Mora P. Thin-foil expansion into a vacuum. Physical Review E, 2005;72(5):056401.

 

  1. Grismayer T, Mora P. Influence of a finite initial ion density gradient on plasma expansion into a vacuum. Physics of Plasmas. 2006;13(3):032103.

 

  1. Wilks S.C, Langdon A.B, Cowan T.E, Roth M, Singh M, Hatchett S, Key M.H, Pennington D, MacKinnon A, Snavely R.A. Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas. 2001;8(2):542-549.

 

  1. Wilks S.C, Kruer W.L, Tabak M, Langdon A.B. Absorption of ultra-intense laser pulses. Physical Review Letters. 1992;69(9):1383.

 

  1. Hatchett S.P, Brown C.G, Cowan T.E, Henry E.A, Johnson J, Key M.H, Koch J.A, Langdon A.B, Lasinski B.F, Lee R.W, Mackinnon A.J, Pennington D.M, Perry M.D, Phillips T.W, Roth M, Sangster T.C, Singh M.S, Snavely R.A, Stoyer M.A, Wilks S.C, Yasuike K. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Physics of Plasmas. 2000;7(5):2076-2082.

 

  1. Passoni M, Lontano M. Theory of light-ion acceleration driven by a strong charge separation. Physical Review Letters. 2008;101(11):115001.

 

  1. Albright B.J, Yin L, Hegelich B.M, Bowers K.J, Kwan T.J.T, Fernández J.C. Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets. Physical Review Letters. 2006;97(11):115002.

 

  1. Wang D, Shou Y, Wang P, Liu J, Li C, Gong Z, Hu R, Ma W, Yan X. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE. Scientific Reports. 2018;8(1):1-7.

 

  1. Zimmer M, Scheuren S, Ebert T, Schaumann G, Schmitz B, Hornung J, Bagnoud V, Rödel C, Roth M. Analysis of laser-proton acceleration experiments for development of empirical scaling laws. Physical Review E, 2021;104(4):045210.

 

  1. Margarone D, Klimo O, Kim I.J, Prokůpek J, Limpouch J, Jeong T.M, Mocek T, Pšikal J, Kim H.T, Proška J, Nam K.H, Štolcová L, Choi I.W, Lee S.K, Sung J.H, Yu T.J, Korn G. Laser-driven proton acceleration enhancement by nanostructured foils. Physical Review Letters. 2012;109(23):234801.

 

  1. Neely D, Foster P, Robinson A, Lindau F, Lundh O, Persson A, Wahlström C.-G, McKenna P. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters. 2006;89(2):021502.

 

  1. Ghasemi S.A, Pishdast M, Yazdanpanah J. Study on the electron acceleration in the interaction of two relativistic laser beams with under-dense plasma. Journal of Nuclear Science and Technology. 2022;99(2):136-145 [In Persian].

 

  1. Goodarzi R, Yazdani E. Studying and surveying proton acceleration in high power laser interaction with foam targets. Journal of Nuclear Science and Technology. 2020;93(3):63-72 [In Persian].

 

  1. Kaluza M, Schreiber J, Santala M.I.K, Tsakiris G.D, Eidmann K, Meyer-ter-Vehn J, Witte K.J. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Physical Review Letters. 2004;93(4):045003.

 

  1. Lécz Z, Singh P, Ter-Avetisyan S, Threshold target thickness in high-contrast laser-driven ion acceleration. Physics of Plasmas. 2022;29(10):103104.

 

  1. Mackinnon A.J, Borghesi M, Hatchett S, Key M.H, Patel P.K, Campbell H, Schiavi A, Snavely R, Wilks S.C, Willi O. Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Physical Review Letters. 2001;86(9):1769.

 

  1. Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J, Riconda C, Grech M. Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Computer Physics Communications. 2018;222:351-373.