نوع مقاله : مقاله پژوهشی
نویسندگان
پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران
چکیده
در سال اول بارگذاری سوخت رآکتورهای هستهای قدرت از اورانیم غنیشده با سطوح مختلف استفاده میشود (در یک نوع رآکتور VVER-1000 سطوح غنا 0/4، 6/3، 3/3، 0/3، 4/2، 2/2 و 3/1 درصد میباشند). در این کار برای تولید اورانیم غنیشده از دو روش موازی یکی با استفاده از آبشارهای مربعی و دیگری با استفاده از آبشارهای مخروطی متقارن استفاده شده است. جهت طراحی و بهینهسازی آبشارها کدهای محاسباتی توسعه داده شده است و از روش فرا ابتکاری PSO برای بهینهسازی استفاده شده است. نتایج نشان میدهد: 1) در صورت استفاده از آبشارهای مربعی امکان تولید مستقیم تمام اورانیم غنیشده با سطوح مختلف وجود دارد و نیازی به داشتن واحد اختلاط در تأسیسات غنیسازی نمیباشد، 2) در صورت استفاده از آبشارهای مخروطی امکان تولید غیرمستقیم تمام اورانیم غنیشده با سطوح مختلف برای سال اول فقط با داشتن واحد اختلاط در تأسیسات غنیسازی مقدور است، 3) تعداد کل سانتریفیوژها/ آبشارها استفاده شده برای تولید اورانیم غنیشده در مقایسه با آبشارهای مربعی حدود 22-39 درصد کاهش را نشان میدهد. 4) در صورت استفاده از سانتریفیوژهای گازی با ظرفیت جداسازی بالا در آبشارهای مربعی و مخروطی، تعداد کل ماشینهای سانتریفیوژ مورد نیاز برای تولید اورانیم غنیشده سوخت به هم نزدیک میشود.
کلیدواژهها
عنوان مقاله [English]
The elimination of the mixing unit in the enrichment facility and the production of enriched uranium for the first cycle of a nuclear power reactor using optimal square cascades
نویسندگان [English]
- S.L. Mirmohammadi
- J. Safdari
- M.H. Mallah
- F. Ezazi
Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran
چکیده [English]
In the first year of fuel loading of nuclear power reactors, uranium enriched at different levels is used (in the type of VVER-1000 reactor, the levels of enrichment are 4.0, 3.6, 3.3, 0.3, 2.4, 2.2, and 1.3%). In this work, for the production of enriched uranium in the first cycle, two parallel methods have been used, one using square cascades and the other using symmetrical tapered cascades. Computational codes have been developed for the design and optimization of the cascades. The meta-heuristic PSO method has been used for optimization. The results show that: 1. if square cascades are used, it is possible to directly produce all uranium enriched with different levels; 2. if tapered cascades are used, it is possible to produce all uranium indirectly, and uranium enrichment at different levels is only possible with a mixing unit in the enrichment facility; 3. The total number of centrifuges or cascades used to produce enriched uranium shows a reduction of about 22–39% compared to the square cascades. 4. If gas centrifuges with high separation capacities are used in square and tapered cascades, the total number of gas centrifuges required for the production of enriched uranium will be close.
کلیدواژهها [English]
- Tapered cascades
- Square cascades
- Power reactor fuel in the first cycle
- PSO optimization algorithm
- Mokhov V.A. Advanced designs of VVER reactor plant. International topical meeting on VVER-2010 - experience and perspectives. Czech Republic. 2010.
- Bilodid Y, Fridman E, Lötsch T. X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution. Annals of Nuclear Energy. 2020;144:107558.
- Benedict M, Pigford T.H, Levi H.W. Nuclear chemical engineering, 2nd edition. ed. McGraw-Hill Education. New York. 1981.
- Sulaberidze G.A, Borisevich V.D, Wood H.G. Ideal and Optimum Cascades. Sep. Sci. Technol. 2008;43(13):3377-3392.
- Azizov T.E, Smirnov A.Y, Sulaberidze G.A. Optimization of a Square Cascade of Centrifuges for Separation of Multicomponent Mixtures of Stable Isotopes. At Energy. 2020;128(5):291-296.
- Khooshechin S, Mansourzadeh F, Imani M, Safdari J, Mallah M.H. Optimization of flexible square cascade for high separation of stable isotopes using enhanced PSO algorithm. Prog. Nucl. Energy. 2021;140:103922.
- Mirmohammadi S.L, Ezazi F, Mallah M.H, Safdari J. Selection of the best 3-section squared-off cascade to enrichment of the 126Xe and 131Xe using particle swarm optimization algorithm. Prog. Nucl. Energy. 2022;146:104153.
- Ezazi F, Imani M, Safdari J, Mallah M.H, Mirmohammadi S.L. An application of nature-inspired paradigms in the overall optimization of square and squared-off cascades to separate a middle isotope of tellurium. Ann. Nucl. Energy. 2022;171: 109033.
- Ezazi F, Mallah M.h, Safdari J, Mirmohammadi S.L. Performance comparison of the optimized k-section squared-off cascades for enrichment of 124Te using two meta-heuristic paradigms. Prog. Nucl. Energy. 2022;145:104105.
- Safdari J, Norouzi A, Tumari R. Using a real coded PSO algorithm in the design of a multi-component countercurrent cascade. Sep. Sci. Technol. 2017;52(18):2855-2862.
- Olander D.R. The theory of uranium enrichment by the gas centrifuge. Prog. Nucl. Energy. 1981;8(1):1-33.
- Borisevich V, Sulaberidze G, Zeng S. New approach to optimize Q-cascades. Chem. Eng. Sci. 2011;66(3): 393-396.
- Mansourzadeh F, Safdari J, Khamseh A.G.H, Norouzi A, Khajenouri M. Comparison of optimum tapered cascade and optimal square cascade for separation of xenon isotopes using enhanced TLBO algorithm. Sep. Sci. Technol. 2018;53(13):2074-2087.
- Zeng S.H.I, Ying C. A Robust and Efficient Calculation Procedure for Determining Concentration Distribution of Multicomponent Mixtures. Sep. Sci. Technol. 2000;35(4):613-622.
- Eberhart R, Kennedy J. A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995;39-43.
- Ezazi F, Mallah M.H, Sabet J.K, Norouzi A. A new method for multicomponent mixture separation cascade optimization using artificial bee colony algorithm. Prog. Nucl. Energy. 2020;124:103371.
- Borisevich V, Borshchevskiy M, Zeng S, Jiang D. On ideal and optimum cascades of gas centrifuges with variable overall separation factors. Chemical Engineering Science. 2014;116:465-472.
- Palkin V. Optimization of a centrifuge cascade for separating a multicomponent mixture of isotopes. Atomic Energy. 2013;115(2):109-115.