نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی پرتوپزشکی، دانشکده فنی و مهندسی، واحد لاهیجان، دانشگاه آزاد اسلامی، صندوق پستی: 1616، لاهیجان - ایران

چکیده

برم-76 (نیمه‌عمر 2/16 ساعت) رادیونوکلئیدی پوزیترون‌زا است که پتانسیل بالایی برای استفاده در پزشکی هسته‌ای دارد؛ اما به دلیل دشواری تولید مقادیر تجاری آن، فقط در مطالعات آزمایشگاهی استفاده می‌شود. این رادیونوکلئید معمولاً از طریق واکنش Br76Se(p,n)76 تولید می‌شود. هدف از این تحقیق، بررسی امکان تولید تجاری Br76 از طریق بمباران هدف‌هایی از جنس ایزوتوپ‌های پایدار ژرمانیم با یون سنگین Li+7 است. با استفاده از کدهای مونت‌کارلو EMPIRE و LISEcute++، توابع برانگیختگی واکنش‌های Br76Li+,n)7)Ge70، Br76n)3Li+, 7)Ge72، Br76n)4Li+, 7)Ge73، Br76n)5Li+, 7)Ge74 و Br76n)7Li+, 7)Ge76 رسم شده و از مقایسه این توابع برانگیختگی، واکنش Br76n)3Li+, 7)Ge72 در محدوده انرژی 30 تا 40 مگاالکترون‌ولت به‌عنوان واکنش برتر انتخاب شد. بیشینه بهره تولید تئوری در انرژی 40 مگاالکترون‌ولت برای این کدها به ترتیب MBq/µAh 46/32 و MBq/µAh 43/61 است. بهره تئوری و تجربی واکنش Br76p,n))Se76 در انرژی 16 مگاالکترون‌ولت به ترتیب MBq/µAh 61/506 و MBq/µAh 88 است. از مقایسه بهره تولید تئوری واکنش‎های Br76n)3Li+, 7)Ge72 و Br76Se(p,n)76 می‌توان این نتیجه را گرفت که واکنش Br76n)3Li+, 7)Ge72 تنها زمانی مورد توجه قرار می‌گیرد که هدف Ge72 یا ترکیبی از آن قابلیت پرتوگیری طولانی‌مدت (بدون ذوب شدن) را داشته باشد و از این طریق، اکتیویته Br76 بیش­تری را در عمل تولید کند.

کلیدواژه‌ها

عنوان مقاله [English]

Feasibility of bromine-76 medical radionuclide production by 7Li+ heavy ion

نویسندگان [English]

  • A. Jamshidi
  • M. Nirouei

Department of Radiological Engineering, Faculty of Engineering, Lahijan Branch, Islamic Azad University, P.O.Box: 1616, Lahijan - Iran

چکیده [English]

Bromine-76 (half-life = 16.2 hours) is a positron emitter radionuclide with a high potential for use in nuclear medicine; but due to the difficulty of producing commercial quantities, it is only used in laboratory studies. This radionuclide is usually produced through the reaction of 76Se(p,n)76Br. This research investigates the possibility of obtaining commercial quantities of 76Br by bombarding targets made of stable germanium isotopes with 7Li+ heavy ion. The excitation functions of 70Ge(7Li+,n)76Br, 72Ge(7Li+,3n)76Br, 73Ge(7Li+,4n)76Br, 74Ge(7Li+,5n)76Br and 76Ge(7Li+,7n)76Br reactions were drawn using the EMPIRE and LISEcute++ codes. From the comparison of these excitation functions, 72Ge(7Li+,3n)76Br in the energy range of 30 to 40MeV was selected as the premier reaction. The maximum theoretical production yield in 40MeV for these codes is 32.46MBq/µAh and 61.43MBq/µAh, respectively. The analyzed and experimental yields of 76Se(p,n)76Br at 16MeV are 506.61MBq/µAh and 88MBq/µAh, respectively. From the comparison of the theoretical production yield of 72Ge(7Li+,3n)76Br and 76Se(p,n)76Br reactions, it can be concluded that the 72Ge(7Li+,3n)76Br reaction is considered only when the target of 72Ge or a combination of them have long-term irradiation capability (without melting) and thus produce more 76Br activity in practice.

کلیدواژه‌ها [English]

  • Bromine-76
  • Germanium
  • Selenium-76
  • Monte Carlo simulation
  • Production yield
  1. Way K, King R.W, McGinnis C.L. Nuclear Level Schemes A = 40-A = 92; AEC Report TID-5300. Washington D.C. 1955.

 

  1. Strominger D, Hollander J.M, Seaborg G.T, Table of Isotopes. Revs. Mod. Phys. 1958;30:585.

 

  1. Nozaki T, Iwamoto M, Itoh Y. Production of 77Br by various nuclear reactions. Int J Appl Radiat Isot. 1979;30:79–83.

 

  1. Hermanne A, Sonck M, Van Hoyweghen J, Terriere D, Mertens J. Optimisation of radiobromine production from As-based targets through cross section determination. In: International conference on nuclear data for science and technology. Gatlinburg, Tennessee, USA. 1994;1039.

 

  1. Breunig K, Spahn I, Hermanne A, Spellerberg S, Scholten B, Coenen H.H. Cross section measurements of 75As(α,xn)76,77,78Br and 75As(α, x)74As nuclear reactions using the monitor radionuclides 67Ga and 66Ga for beam evaluation. Radiochim Acta. 2017;105:431–439.

 

  1. Alfassi Z.B, Weinreich R. The production of positron emitters 75Br and 76Br: excitation functions and yields for 3He and α- particle induced reactions on arsenic. Radiochim. Acta. 1980;30:67–71.

 

  1. Levkovskij V.N. Activation cross sections for the nuclides of medium mass region (A = 40–100) with protons and α –particles at medium (E = 10–50 MeV) energies. Experiment and systematics. INTER-VESTI, Moscow. 1991.

 

  1. Tolmachev V, Lövqvist A, Einarsson L, Schultz J, Lundqvist H. Production of 76Br by a low-energy cyclotron. Appl Radiat Isot. 1998;49(12):1537–40.

 

  1. Hassan H.E, Qaim S.M, Shubin Yu, Azzam A, Morsy M, Coenen H.H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl Radiat Isot. 2004;60:899–909.

 

  1. Spahn I, Steyn G.F, Vermeulen C, Kovács Z, Szelecsényi F, Coenen H.H, Qaim S.M. New cross section measurements for production of the positron emitters 75Br and 76Br via intermediate energy proton induced reactions. Radiochim. Acta. 2009;97:535–541.

 

  1. Hassan H.E, El-Azony K.M, Azzam A, Qaim S.M. Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV. Radiochim Acta. 2017;105(10):841–50.

 

  1. Breunig K, Spahn I, Spellerberg S, Coenen H.H. Production of no-carrier-added radiobromine: new nickel selenide target and optimized separation by dry distillation. Radiochim Acta. 2015;103:397–402.

 

  1. Ellison P.A, Graves S.A, Murali D, De Jesus O.T, Barnhart T.E, Thomadsen B.R, Speer T, Nickles R.J. Radiobromine production, isolation and radiosynthesis for the development of a novel prostate cancer radiotherapeutic agent. AIP Conf. Proc. 2017;1845:1–8.

 

  1. Ellison P.A, Olson A.P, Barnhart T.E, Hoffman S.L.V, Reilly S.W, Makvandi M, Bartels J.L, Murali D, DeJesus O.T, Lapi S.E, Bednarz B, Nickles R.J, Mach R.H, Engle J.W. Improved production of 76Br, 77Br and 80mBr via CoSe cyclotron targets and vertical dry distillation. Nucl. Med. Biol. 2020;80–81:32–36.

 

  1. Paans A.M.J, Welleweerd J, Vaalburg W, Reiffers S, Woldring M.G. Excitation functions for production of bromine-75: a potential nuclide for the labeling of radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 1980;31:267.

 

  1. Scholten B, Takács S, Tárkányi F, Coenen H.H, Qaim S.M. Excitation functions of deuteron induced nuclear reactions on enriched 78Kr with particular relevance to the production of 76Br. Radiochim. Acta. 2004;92:203–207.

 

  1. Qaim S.M, Stöcklin G, Weinreich R. Excitation functions for the formation of neutron deficient isotopes of bromine and krypton via high energy deuteron induced reactions on bromine: Production of 77Br, 76Br and 79Kr. Int. J. Appl. Radiat. Isot. 1977;28:947–953.

 

  1. De Villiers D, Nortier M, Richter W. Experimental and theoretical functions for natBr(p,x) reactions. Appl. Radiat. Isot. 2002;57:907.

 

  1. De Jong D, Kooiman H, Veenboer J.T. 76Br and 77Br from decay of cyclotron produced 76Kr and 77Kr. Int. J. Appl. Radiat. Isot. 1979;30:786–788.

 

  1. McGuinness S.R, Ferran S.J, Wilkinson J.T, Loveless C.Sh, Anderson T, Blankstein D, Clark A.M, Henderson S.L, Nelson A.D, Reingold C.S, Skulski M, Lapi S.E, Peaslee G.F. Production of 52Fe from symmetric complete fusion-evaporation reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2021;493:15–18.

 

  1. Wilkinson J.T, Barrett K.E, Ferran S.J, McGuinness S.R, McIntosh L.A, McCarthy M, Yennello Sh.J, Engle J.W, Lapi S.E, Peaslee G.F. A heavy-ion production channel of 149Tb via 63Cu bombardment of 89Y. Appl. Radiat. Isot. 2021.

 

  1. McGuinness S.R, Wilkinson J.T, Peaslee G.F. Heavy-ion production of 77Br and 76Br. Sci Rep. 2021;11:15749.

 

  1. Heinicke E, Bethge K, Baumann H. A universal ion source for tandem accelerators. Nuclear Instruments and Methods. 1968;58(1):125-133.

 

  1. Vasiliev P.I, Venikov N.I, Zevjakin D.V, Ogloblin A.A, Khaldin N.N, Khoroshavin B.I, Chuev V.I, Chumakov N.I. Acceleration of lithium ions in a cyclotron. Nuclear Instruments and Methods. 1969;71(2):201-204.

 

  1. Herman M, Capote R, Sin M, Trkov A, Carlson B.V, Oblozinsky P, Mattoon C.M, Wienke H. Hoblit S, Cho Y.-S, Nobre G.P.A, Plujko V, Zerkin V. EMPIRE-3.2 Malta Modular system for nuclear reaction calculations and nuclear data evaluation. report INDC (NDS)-0603, BNL-101378-2013. Vienna, Austria: International Atomic Energy Agency. 2013.

 

  1. Tarasov O.B, Bazin D. LISE++: Radioactive beam production with in-flight separators. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2008;266(8):4657-4664.

 

  1. Ziegler J.F, Ziegler M.D, Biersack J.P. SRIM-The Stopping and Range of Ions in Matter. Nucl. Instrum. Meth. B 2010;268:1818-1823.

 

  1. Perring L, Feschotte P, Gachon J.C. The germanium-ruthenium system. JPE. 1996;17:101–106.

 

  1. Price list of electromagnetically separated isotopes. https://en.institut-seltene-erden.de.