نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، نفت، گاز، دانشگاه سمنان، صندوق پستی: 19111-35131، سمنان ـ ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

با توسعه فعالیت‌­های هسته‌­ای مختلف، تولید پساب‌­های حاوی یون­‌های فلزی سنگین افزایش یافته است. یکی از مهم‌ترین یون‌­های فلزی که مضرات زیادی برای محیط­زیست و موجودات زنده و به خصوص انسان دارد، یون اورانیل است. روش‌­های زیادی برای حذف یون‌­های فلزی وجود دارد که جذب زیستی ارزان­‌ترین وکاراترین روش است. در این تحقیق به جذب یون اورانیل از محلول‌­های آبی توسط تفاله چای پرداخته شده است. تفاله چای به دلیل حضور گروه‌های عاملی مختلف مانند کربوکسیل، هیدروکسیل، آمین و ... از پتانسیل مناسبی جهت جذب یون­‌های فلزی برخوردار است. پارامترهای مؤثر در جذب از جمله پارامترهای pH ، میزان جاذب، دما، غلظت اولیه اورانیل و زمان تماس بررسی شدند و از روش سطح پاسخ (RSM) برای انجام آزمایش­‌ها‌ و تحلیل نتایج استفاده شد. نقطه بهینه برای جذب اورانیل توسط جاذب تفاله چای 9/3pH=، دماC °25، میزان جاذبg  275/0، غلظت اولیه اورانیل mg/L 10و زمان تماس 90 دقیقه به‌­دست آمد. ایزوترم فرندلیچ و مدل شبه مرتبه دوم بهترین مدل ایزوترم و سینتیکی برازش شده با نتایج است. نتایج نشان داد که جاذب زیستی تفاله چای، عملکرد مطلوبی برای جذب اورانیل از پساب واقعی داشته و میزان جذب 50/93% است.

کلیدواژه‌ها

عنوان مقاله [English]

Study of biosorption of uranyl from aqueous solution by tea waste using RSM method

نویسندگان [English]

  • M. Taheri 1
  • M. Khajenoori 1
  • Z. Shiri-Yekta 2
  • F. Zahakifar 2

1 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, P.O.Box: 35131-19111, Semnan – Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

چکیده [English]

Heavy metal ions have increased wastewater production with the development of various nuclear activities. One of the most significant metal ions that harm the environment and living organisms, especially humans, is the uranyl ion. There are many methods to remove metal ions, and biological adsorption is the cheapest and most efficient method. In this research, the absorption of uranyl ions from aqueous solutions from tea waste has been studied. Due to the presence of various functional groups such as carboxyl, hydroxyl, amine, etc, tea wastes have good cations adsorption ability. The effective parameters in adsorption including pH, adsorbent dose, temperature, initial uranyl concentration, and contact time parameters were investigated. Response surface methodology (RSM) was used to conduct experiments and analyze the results. The optimum conditions for uranyl adsorption by tea waste adsorbent were pH = 3.9, temperature 25°C, adsorbent dose 0.275 g, initial concentration of uranyl 10 mg/L, and contact time 90 minutes. Using Freundlich's isothermal and pseudo-second-order models, we fitted the most accurate isothermal and kinetic models. Results showed that tea waste was a good bio adsorbent for uranyl adsorption from real wastewater with a 93.50% adsorption rate.

کلیدواژه‌ها [English]

  • Biosorption
  • Tea waste
  • Uranyl
  • Response surface methodolog
  1. Housseinpour R, Latibari A.J, Farnood R, Fatehi P, Sepiddehdam S.J. Fiber morphology and chemical composition of rapeseed (Brassica napus) stems. IAWA Journal. 2010;31(4):457-464.

 

  1. Gupta N.K, Sengupta A, Gupta A, Sonawane J.R, Sahoo H. Biosorption-an alternative method for nuclear waste management: a critical review. Journal of Environmental Chemical Engineering. 2018;6(2):2159-2175.

 

  1. Olawale S.A, Biosorption of Heavy Metals: A Mini Review. Acta Scientific Agriculture. 2019;3:22-25.

 

  1. Ribera D, Labrot F, Tisnerat G, Narbonne J.F. Uranium in the environment: occurrence, transfer, and biological effects. In Reviews of Environmental Contamination and Toxicology. 1996 Springer;53-89.

 

  1. Cheira M.F, Orabi A.S, Atia B.M, Hassan S.M. Solvent extraction and separation of thorium (IV) from chloride media by a Schiff base. Journal of Solution Chemistry. 2018;47(4):611-633.

 

  1. Zhu Z, Pranolo Y, Cheng C.Y. Uranium solvent extraction and separation from vanadium in alkaline solutions. Separation Science and Technology. 2013;48(9):1402-1408.

 

  1. Ang K.L, Li D, Nikoloski A.N. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins. Hydrometallurgy. 2017;174:147-155.

 

  1. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 2011;92(3):407-418.

 

  1. Duan P, Wang W, Sang S, Ma M, Wang J, Zhang W. Modes of occurrence and removal of toxic elements from high‐uranium coals of Rongyang Mine by stepped release flotation. Energy Science & Engineering. 2019;7(5):1678-1686.

 

  1. Zaheri A, Moheb A, Keshtkar A.R, Shirani A. Uranium separation from wastewater by electrodialysis. Journal of Environmental Health Science & Engineering. 2010;7(5):423-430.

 

  1. Kim K.-W, Hyun J.T, Lee K.Y, Lee E.H, Chung D.Y, Moon J.K. Recycling of acidic and alkaline solutions by electrodialysis in a treatment process for uranium oxide waste using a carbonate solution with hydrogen peroxide. Industrial & Engineering Chemistry Research. 2012;51(18):6275-6282.

 

  1. Ozdemir S, Kılınc E, Yalcin m.S, Soylak M, Şen F. A new magnetized thermophilic bacteria to preconcentrate uranium and thorium from environmental samples through magnetic solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis. 2020;186:113315.

 

  1. Abdel-Magied A.F. Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study. Radiochimica Acta. 2017;105(10):813-820.

 

  1. Horwitz E.P, Dietz M.L, Chiarizia R, Diamond H, Essling A.M, Graczyk D. Separation and preconcentration of uranium from acidic media by extraction chromatography. Analytica Chimica Acta. 1992;266(1):25-37.

 

  1. Milliard A, Durand-Jézéquel M, Larivière D. Sequential automated fusion/extraction chromatography methodology for the dissolution of uranium in environmental samples for mass spectrometric determination. Analytica Chimica Acta. 2011;684(1-2):40-46.

 

  1. Rao T.P, Metilda P, Gladis J.M. Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview. Talanta. 2006;68(4):1047-1064.

 

  1. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnology Advances. 2009;27(2):195-226.

 

  1. Fomina M, Gadd G.M. Biosorption: current perspectives on concept, definition and application. Bioresource Technology. 2014;160:3-14.

 

  1. Zhao Y, Wang D, Xie H, Won S.W, Cui L, Wu G. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies. Bioprocess and Biosystems Engineering. 2015;38(1):69-77.

 

  1. Taheri M, Khajenoori M, Shiri-Yekta Z, Zahakifar F. Review of effective parameters on bioabsorption of heavy metals. The 11th International Chemical Engineering Congress & Exhibition (IChEC 2020), 2020;1(551).

 

  1. Joshi N.C. Biosorption: Agreen approach for heavy metals removal from water and waste waters. RJLBPCS. 2018;4(1):1-59.

 

  1. Li X, Li F, Jin Y, Jiang C. The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. Journal of Molecular Liquids. 2015;209:413-418.

 

  1. Deshmukh P, Sar S.K, Ghosh P.K. Efficient exclusion of uranyl ion from aqueous medium by a novel magnetic bio adsorbent (Phyllanthus emblica bark). Groundwater for Sustainable Development. 2021;14:100625.

 

  1. Zhang X, Kong L, Song G, Chen D. Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups. Environmental Engineering Science. 2016;33(12):942-950.

 

  1. Mahmoud M. Removal of uranium (VI) from aqueous solution using low cost and eco-friendly adsorbents. J. Chem. Eng. Process Technol. 2013;4(6):1-4.

 

  1. Ding D.X, Liu X.T, Hu N, Li G.Y, Wang Y.D. Removal and recovery of uranium from aqueous solution by tea waste. Journal of Radioanalytical and Nuclear Chemistry. 2012;293:735–741.

 

  1. Aly Z, Luca V. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. Journal of Radioanalytical and Nuclear Chemistry. 2013;295:889–900.

 

  1. Ijaz A, Danish K, Tariq M, Ayub K. Removal of Uranium U(IV) from aqueous solution using acid treated spent tea leaves. Current Research in Green and Sustainable Chemistry. 2021;4:100197.

 

  1. Foroughi-Dahr M, Abolghasemi H. Esmaili M, Shojamoradi A, Fatoorehchi H. Adsorption characteristics of Congo red from aqueous solution onto tea waste. Chemical Engineering Communications. 2015;202(2):181-193.

 

  1. Wan S, Ma Z, Xue Y, Ma M, Xu S, Qian L, Zhang Q. Sorption of lead (II), cadmium (II), and copper (II) ions from aqueous solutions using tea waste. Industrial & Engineering Chemistry Research. 2014;53(9):3629-3635.

 

  1. Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R. Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering. 2016;39:1899-1911.

 

  1. Tofighy M.A, Mohammadi T. Permanent hard water softening using carbon nanotube sheets. Desalination. 2011;268(1-3):208-213.

 

  1. Olaofe O, Olagboye S.A, Akanji P.S, Adamolugbe E.Y, Fowowe O.T, Olaniyi A.A. Kinetic studies of adsorption of heavy metals on clays. International Journal of Chemistry. 2015;7(1):48-54.

 

  1. Ai L, Luo X, Lin X, Zhang S. Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism. Journal of Radioanalytical and Nuclear Chemistry. 2013;298:1823-1834.

 

  1. Zhou L, Huang Z, Luo T, Liu Y.J.Z, Adesina A.A. Biosorption of uranium(VI) from aqueous solution using phosphate-modified pine wood sawdust. Journal of Radioanalytical and Nuclear Chemistry. 2015;303:1917-1925.

 

  1. Sabanovic E, Muhic-Sarac T, Nuhanovic M, Memic M. Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. Journal of Radioanalytical and Nuclear Chemistry. 2019;319:425–435.

 

  1. Ho Y, Porter J, McKay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, air, and soil pollution. 2002;141(1):1-33.

 

  1. Aly Z, Luca V. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. Journal of Radioanalytical and Nuclear Chemistry. 2013;295:889-900