نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی انرژی، دانشگاه صنعتی شریف، صندوق پستی: 1114- 14565، تهران- ایران

2 پژوهشگاه دانش‌های بنیادی، صندوق پستی: 5531 - 19395، تهران- ایران

چکیده

در چند دهه اخیر، تأثیر نانوذرات در پرتودرمانی موردتوجه بسیاری از محققان قرار گرفته است. پژوهش حاضر با هدف بررسی اثر مدل‌های برهم­کنش فیزیکی مختلف بر روی محاسبات دز در اطراف نانوذرات طلا، هافنیوم و گادولینیم، انجام شده است. با استفاده از ابزار مونت‌کارلوی Geant4، یک نانوذره به قطر 50 نانومتر در فانتوم مکعبی آب شبیه‌سازی شد و تحت تابش پروتون با انرژی‌های 5، 50 و MeV 150 قرار گرفت. مطالعه حاضر پارامترهای مختلفی را از جمله طیف انرژی الکترون‌ها و فوتون‌های ثانویه، توزیع دز شعاعی (RDD)، ضریب افزایش دز (DEF)، در اطراف نانوذره با سه جنس مختلف و دو مدل برهم­کنش فیزیکی مورد بررسی قرار داده است. نتایج حاصل‌شده نشان داد که برای نانوذره طلا تعداد الکترون‌های ثانویه با مدل پنلوپه بیش­تر از مدل لیورمور بود؛ ولی برای دو نانوذره دیگر، الکترون‌های ثانویه بیش­تری با مدل لیومور نسبت به مدل پنلوپه تولید شد. در نمودارهای RDD تا فاصله 6 نانومتری از سطح نانوذره طلا (در راستای شعاعی در محیط آب)، مدل پنلوپه یک اختلاف 10 درصدی را نسبت به مدل لیورمور ارائه می‌کند. هم­چنین، تا فاصله 9 نانومتری از سطح نانوذره، مدل لیورمور به ترتیب یک افزایش 16 و 10 درصدی در دز را در مقایسه با مدل پنلوپه برای نانوذرات هافنیوم و گادولینیم نشان می‌دهد. در مورد DEF، دز نهشت‌شده در اطراف نانوذره طلا 14 برابر افزایش یافت که بالاترین مقدار در مقایسه با افزایش دز پیرامون نانوذرات هافنیوم و گادولینیم که به ترتیب 10 و 6 برابر بودند، می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

The simulation of dose variation effects due to the presence of different metal nanoparticles under proton irradiation using Geant4 toolkit

نویسندگان [English]

  • J. Alamgir 1
  • S.A. Hosseini 1
  • E. Salimi 2

1 Department of Energy Engineering, Sharif University of Technology, P.O.Box: 14565-1114, Tehran – Iran

2 Institute for Research in Fundamental Sciences, IPM, P.O.Box: 19395-5531, Tehran, Iran

چکیده [English]

The impacts of nanoparticles in radiation therapy have been investigated for many years now. The present study was conducted to investigate the effect of different physical interaction models on dose calculations using gold, hafnium and gadolinium nanoparticles. A nanoparticle with a diameter of 50 nm was simulated in a cubic water phantom. It was irradiated by protons with energies of 5, 50 and 150 MeV using Geant4 Monte Carlo toolkit. The current study considers various parameters, including the energy spectrum of secondary electrons and photons, radial dose distribution (RDD), dose enhancement factor (DEF), around the nanoparticle with three different materials and two physical interaction models. The obtained data showed that for gold nanoparticles, the Penelope model generated a greater number of secondary electrons than the Livermore model; however, for the other two nanoparticles, the Livermore model produced a greater number of secondary electrons than the Penelope model. In the RDD graphs, the Penelope model presents a 10% difference compared to the Livermore model up to a distance of 6 nm from the nanoparticle’s surface (along the radial axis in water). Furthermore, the Livermore model indicates a 16% and 10% increase in dose compared to the Penelope model. This is up to a distance of 9 nm from the surface of hafnium and gadolinium nanoparticles, respectively. In the case of DEF, the dose deposited around the gold nanoparticle was increased by 14. This is the highest amount in comparison to DEF of hafnium and gadolinium nanoparticles which is 10 and 6, respectively.

کلیدواژه‌ها [English]

  • Nanoparticle
  • Dose enhancement factor
  • Proton therapy
  • Monte carlo simulation
  • Geant4
  1. Loeffler J.S, Durante M. Charged particle therapy—optimization, challenges and future directions. Nature Reviews Clinical Oncology. 2013;10(7):411-424.

 

  1. Wilson R.R. Radiological use of fast protons. Radiology. 1946;47(5):487-491.

 

  1. Kirkby C, Ghasroddashti E. Targeting mitochondria in cancer cells using gold nanoparticle‐enhanced radiotherapy: A Monte Carlo study. Medical Physics. 2015;42(2):1119-1128.

 

  1. McMahon S.J, Paganetti H, Prise K.M. Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 2016;8(1):581-589.

 

  1. Hainfeld J.F, Slatkin D.N, Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine & Biology. 2004;49(18):N309.

 

  1. Jain S, Hirst D, O'Sullivan J. Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology. 2012;85(1010):101-113.

 

  1. Ahmad S.B, Sarfehnia A, Paudel M.R, Kim A, Hissoiny S, Sahgal A, Keller B. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with geant 4. Medical Physics. 2016;43(2):894-907.

 

  1. Her S, Jaffray D.A, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews. 2017;109:84-101.

 

  1. Kim J.-K, Seo S.J, Kim H.T, Kim K.H, Chung M.H, Kim K.R, Ye S.J. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Physics in Medicine & Biology. 2012;57(24):8309.

 

  1. Peukert D, Incerti S, Kempson I, Douglass M, Karamitros M, Baldacchino G, Bezak E. Validation and investigation of reactive species yields of Geant4‐DNA chemistry models. Medical Physics. 2019;46(2):983-998.

 

  1. Wälzlein C, Scifoni E, Krämer M, Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Physics in Medicine & Biology. 2014;59(6):1441.

 

  1. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research. 1986;46(12_Part_1):6387-6392.

 

  1. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49.

 

  1. Connor E.E, Mwamuka J, Gole A, Murphy C.J, Wyatt M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-327.

 

  1. Regulla D, Hieber L, Seidenbusch M. Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiation Research. 1998;150(1):92-100.

 

  1. Matsudaira H, Ueno A.M, Furuno I. Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γ rays. Radiation Research. 1980;84(1):144-148.

 

  1. Dawson P, Penhaligon M, Smith E, Saunders J. Iodinated contrast agents as “radiosensitisers”. The British Journal of Radiology. 1987;60(710):201-203.

 

  1. Tokita N, Akine Y, Egawa S, Raju M.R. Biological dosimetry for iodine contrast medium and X-ray interactions by cell survival. The British Journal of Radiology. 1990;63(753):735-737.

 

  1. Baba K, Kusumoto T, Okada S, Ogawara R, Kodaira S, Raffy Q, Barillon R, Ludwig N, Galindo C, Peaupardin P, Ishikawa M. Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4-DNA. Scientific Reports. 2021;11(1):1524.

 

  1. Gadoue S.M, Toomeh D. Enhancement of linear energy transfer in gold nanoparticles mediated radiation therapy. Physica Medica. 2019;60:22-29.

 

  1. Shin W.-G, Ramos-Mendez J, Faddegon B, Tran H.N, Villagrasa C, Perrot Y, Okada S, Karamitros M, Emfietzoglou D, Kyriakou I, Bordage M.C, Sakata D, Guatelli S, Choi H.J, Min C.H, Lee S.B, Incerti S. Evaluation of the influence of physical and chemical parameters on water radiolysis simulations under MeV electron irradiation using Geant4-DNA. Journal of Applied Physics. 2019;126(11):114301.

 

  1. Lin Y, McMahon S.J, Scarpelli M, Paganetti H, Schuemann J. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Physics in Medicine & Biology. 2014;59(24):7675.

 

  1. Tran H.N, Karamitros M, Ivanchenko V.N, Guatelli S, McKinnon S, Murakami K, Sasaki T, Okada S, Bordage M.C, Francis Z, El Bitar Z, Bernal M.A, Shin J.I, Lee S.B, Barberet Ph, Tran T.T, Brown J.M.C, Nhan Hao T.V, Incerti S. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2016;373:126-139.

 

  1. Rajabpour S, Saberi H, Rasouli J, Jabbari N. Comparing Geant4 physics models for proton-induced dose deposition and radiolysis enhancement from a gold nanoparticle. Scientific Reports. 2022;12(1):1779.

 

  1. Dubey P, Sertorio M, Takiar V. Therapeutic advancements in metal and metal oxide nanoparticle-based radiosensitization for head and neck cancer therapy. Cancers. 2022;14(3):514.

 

  1. Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Physics in Medicine & Biology. 2018;63(2):02TR01.

 

  1. Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, Furusawa Y, Le Sech MD C, Li Sh, Lacombe S. Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine: Nanotechnology, Biology and Medicine. 2014;10(8):1601-1608.

 

  1. Schlathölter T, Eustache P, Porcel E, Salado D, Stefancikova L, Tillement O, Lux F, Mowat P, K Biegun A, Van Goethem M.J, Remita H, Lacombe S. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. International Journal of Nanomedicine. 2016;11:1549.

 

  1. Lane S.A, Slater J.M, Yang G.Y. Image-Guided Proton Therapy: A Comprehensive Review. Cancers. 2023;15(9):2555.

 

  1. Bernal M.A, Bordage M.C, Brown J.M.C, Davídková M, Delage E, El Bitar Z, Enger S.A, Francis Z, Guatelli S, Ivanchenko V.N, Karamitros M, Kyriakou I, Maigne L, Meylan S, Murakami K, Okada S, Payno H, Perrot Y, Petrovic I, Pham Q.T, Incerti S. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Physica Medica. 2015;31(8):861-874.

 

  1. Sotiropoulos M, Taylor M.J, Henthorn N.T, Warmenhoven J.W, Mackay R.I, Kirkby K.J, Merchant M.J. Geant4 interaction model comparison for dose deposition from gold nanoparticles under proton irradiation. Biomedical Physics & Engineering Express. 2017;3(2):025025.

 

  1. Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld A.B, Lerch M, Tehei M, Guatelli S. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomedical Physics & Engineering Express. 2018:4(2):024001.

 

  1. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Zschiesche D. GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003;506(3):250-303.

 

  1. Chithrani D.B, Jelveh S, Jalali F, Van Prooijen M, Allen C, Bristow R.G, Hill R.P, Jaffray D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research. 2010;173(6):719-728.

 

  1. Sakata D, Kyriakou I, Tran H.N, Bordage M.C, Rosenfeld A. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Physica Medica. 2019;63:98-104.

 

  1. Incerti, S, Kyriakou I, Bernal M.A, Bordage M.C, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee S.B, Meylan S, Min C.H, Shin W.G, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran H.N, Brown J.M.C. Geant4‐DNA example applications for track structure simulations in liquid water: a report from the Geant4‐DNA Project. Medical Physics. 2018;45(8):e722-e739.