نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشکده مهندسی انرژی، دانشگاه صنعتی شریف، صندوق پستی: 1114- 14565، تهران- ایران
2 پژوهشگاه دانشهای بنیادی، صندوق پستی: 5531 - 19395، تهران- ایران
کلیدواژهها
عنوان مقاله English
نویسندگان English
The impacts of nanoparticles in radiation therapy have been investigated for many years now. The present study was conducted to investigate the effect of different physical interaction models on dose calculations using gold, hafnium and gadolinium nanoparticles. A nanoparticle with a diameter of 50 nm was simulated in a cubic water phantom. It was irradiated by protons with energies of 5, 50 and 150 MeV using Geant4 Monte Carlo toolkit. The current study considers various parameters, including the energy spectrum of secondary electrons and photons, radial dose distribution (RDD), dose enhancement factor (DEF), around the nanoparticle with three different materials and two physical interaction models. The obtained data showed that for gold nanoparticles, the Penelope model generated a greater number of secondary electrons than the Livermore model; however, for the other two nanoparticles, the Livermore model produced a greater number of secondary electrons than the Penelope model. In the RDD graphs, the Penelope model presents a 10% difference compared to the Livermore model up to a distance of 6 nm from the nanoparticle’s surface (along the radial axis in water). Furthermore, the Livermore model indicates a 16% and 10% increase in dose compared to the Penelope model. This is up to a distance of 9 nm from the surface of hafnium and gadolinium nanoparticles, respectively. In the case of DEF, the dose deposited around the gold nanoparticle was increased by 14. This is the highest amount in comparison to DEF of hafnium and gadolinium nanoparticles which is 10 and 6, respectively.
کلیدواژهها English