نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی منابع معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی، صندوق پستی: 69411-19839، تهران ـ ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

محدوده شیخ هابیل در فاصله حدود 80 کیلومتری دهدشت در جنوب شرق استان کهگیلویه و بویراحمد قرار گرفته است. این محدوده در زون زمین‌ساختی زاگرس قرار دارد. سنگ میزبان این محدوده از سازند پابده با سن پالئوسن پسین ـ الیگوسن پیشین تشکیل شده است. سنگ‌های محدوده شیل‌های خاکستری به همراه با لایه‌های فسفریت و لایه‌های نازک آهک مارنی و آهک چرت‌دار است. در این پژوهش کانی‌سازی عناصر نادر خاکی، اورانیم و سایر عناصر همراه موجود در فسفریت‌های سازند پابده در منطقه شیخ هابیل براساس مشاهدات صحرایی، مطالعات سنگ‌شناسی، کانی‌شناسی و تجزیه‌های ژئوشیمیایی بررسی شد. نتایج کانی‌شناسی نشان داد که کانی‌های کلسیت، فلوئورآپاتیت، گلوکونیت، کوارتز و کانی‌های رسی کانی‌های اصلی کانسنگ فسفات شیخ هابیل هستند. کانسار فسفات شیخ هابیل با میانگین 47/24 درصد 5O2P یکی از مهم‌ترین ذخایر فسفات در سازند پابده است. نتایج تجزیه‌های شیمیایی نشان داد که میانگین غلظت اورانیم حدود 100 پی‌پی‌ام و متوسط ضریب غنی شدگی آن حدود 5/46 است. میانگین مجموع عناصر نادر خاکی نمونه‌های حاوی فسفات 18/189 پی‌پی‌ام می‌باشد. نسبت (La/Yb)N حدود 54/0-62/0 و (LREE/HREE)N بین 62/0-72/0 است. این داده‌ها نشان می‌دهد که غنی‌شدگی‌ تقریبی HREEها نسبت به LREEها دیده می‌شود. نمونه‌های مورد مطالعه دارای بی­هنجاری منفی Ce است که نشان­دهنده وجود یک محیط فاقد اکسیژن در زمان نهشت فسفریت‌های شیخ هابیل می‌باشد. نتایج تجزیه‌های شیمیایی نشان داد که فسفریت‌های محدوده شیخ هابیل دارای غنی شدگی خوبی از عناصر نادرخاکی و اورانیم هستند. این نتایج بیانگر این نکته است که دیگر مناطق سازند پابده می‌توانند ذخایری از این عناصر ارزشمند داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

REE and U mineralization in the phosphorites of the Pabdeh Formation, Sheikh Habil area, Kohgiloyeh-Boyer Ahmad province, SW of Iran

نویسندگان [English]

  • M. Haj Abdollah Javaheri 1
  • M. Yazdi 1
  • I. Rasa 1
  • Kh. Khoshnoodi 2
  • S. Ziapour 2

1 Department of Geology of Minerals and Water Resources, Faculty of Earth Science, Shahid Beheshti University, P.O.Box: 19839-69411, Tehran – Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

چکیده [English]

The Sheikh Habil area lies 80km south of Dehdasht and is located in the southeast of Kohgiloyeh-Boyer Ahmad province, in the SW of Iran. Pabdeh Formation is located in Iran's Zagros structural zone. The host rocks of the area are Late Paleocene-Early Oligocene limestones, shales and marls. Calcite, fluorapatite, glauconite, quartz and clay minerals are the most observable minerals in these phosphorite rocks. The geochemical data show that the average contents of P2O5, U and ΣREE are 24.47%, 100ppm (with an enrichment factor of 46.54) and 189.18 ppm, respectively. The (La/Yb)N is 0.62-0.54 and the (LREE/HREE)N is 0.62-0.72. The studied samples have negative Ce anomaly which indicates the existence of an anoxic environment during the Sheikh Habil phosphate deposition. These ratios show relative enrichment in HREEs compared to LREEs. This data confirms that the Sheikh Habil phosphorites have high anomalies not only for P2O5 but also for U and HREEs. These data show that the other areas in the Pabdeh Formation could be good targets for P2O5, U and REEs.

کلیدواژه‌ها [English]

  • Pabdeh Formation
  • Sheikh Habil ore deposit
  • Phosphorite
  • Uranium
  • Rare earth elements
  1. Khaustova N, Tikhomirova Y, Korost S, Poludetkina E, Voropaev A, Mironenko M, Spasennykh M. The Study of uranium accumulation in marine bottom sediments: effect of redox conditions at the time of sedimentation. Geosciences. 2021:11(8):332.

 

  1. Guilbert J.M, Park C.F. The geology of ore deposits, 1st ed. (Waveland Press, Inc, New York. 1986).

 

  1. Emsbo P, McLaughlin P.I, Breit G.N, Du Bray E.A, Koenig A.E. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?. Gondwana Research. 2015:27(2):776.

 

  1. Karimzadeh Samarin K. Using Geochemical Data: Evolution, Presentation, Interpretation, 1st ed. (Tabriz University, Tabriz. 2002) [In Persian].

 

  1. Boggs S. Petrology of Sedimentary Rocks, 1st ed. (Cambridge University Press, London. 2009).

 

  1. Tzifas I.Tr, Godelitsas A, Magganas A, Androulakaki E, Eleftheriou G, Mertzimekis T.J, Perraki M. Uranium-bearing phosphatized limestone of new Greece. J. Geochem. Explor. 2014;143:62.

 

  1. Baturin G.N, Kochenov A.V. Uranium in phosphorites. Lithol. Miner. Resour. 2001:36(4):303.

 

  1. Kochenov A.V, Baturin G.N. The paragenesis of organic matter, phosphorus, and uranium in marine sediments. Lithol. Miner. Resour. 2002;37(2):107.

 

  1. Hein J.R, Koschinsky A, Mikesell M, Mizell K, Glenn C.R, Wood R. Marine phosphorites as potential resources for heavy rare earth elements and yttrium. Minerals. 2016;9(3):88.

 

  1. Abed A.M, Sadaqah R.M. Enrichment of uranium in the uppermost Al-Hisa Phosphorite Formation, Eshidiyya Basin, Southern Jordan. J. Afr. Earth. Sci. 2013;77:31.

 

  1. Schnug E, Haneklaus N. Uranium, the hidden treasure in phosphates. Procedia Eng. 2014;83:265.

 

  1. Halalat H, Bolourchi M.H. Geology of Iran: Phosphate, 1st ed. (Geological Survey and Mineral Exploration of Iran, Tehran). 1994 [In Persian].

 

  1. Khoshnoodi K, Ziapour S. In: Geochemical and Mineralogical Characterization of Uranium and Thorium Deposits. Edited by IAEA (IAEA, Vienna). 2020;93-124.

 

  1. Khoshnoodi K, Ziapour S. Geochemistry of uranium and REEs in Dalir phosphate deposit, Central Alborz zone. JONSAT. 2022.

 

  1. Khoshnoodi K, Ziapour S. Uranium and rare earth elements in the phosphate deposits of the Pabdeh Formation, Zagros Zone, Iran: concentrations and geochemical patterns comparison. Environ. Earth Sci. 2022;81:1.

 

  1. Alavi M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 2004;304:1.

 

  1. James G, Wynd J.G. Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bulletin. 1965;49:2182.

 

  1. Sepehr M, Cosgrove J. Structural framework of the Zagros Fold–Thrust Belt. Iran, Mar. Pet. Geol. 2004;21:829.

 

  1. Bahroudi A, Koyi H.A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros Foreland Basin. Mar. Pet. Geol. 2004;21:1295.

 

  1. Aghanabati S.A. Geology of Iran, 1st ed. (Geological Survey and Mineral Exploration of Iran, Tehran). 2004 [In Persian].

 

  1. Alsharhan A.S, Nairn A.E.M. Tertiary of the Arabian Gulf: sedimentology and hydrocarbon potential. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995;114:369.

 

  1. Berberian M. Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics. 1995;241:193.

 

  1. Burchette T.P, Wright V.P. Carbonate ramp depositional systems. Sediment. Geol. 1992;79:3.

 

  1. Ilyin A.V. Mid-Cretaceous phosphate platforms of the Russian Craton. Sediment. Geol. 1997;113:125.

 

  1. Soudry D, Ehrlich S, Yoffe O, Nathan Y. Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern vIsrael). Chem. Geol. 2002;189:213.

 

  1. Kolodny Y, Luz B. Isotope signature in phosphate deposits formation and diagenetic history. Notes in Earth Sciences 43, Springer-Verlag, Berlin. 1992;69.

 

  1. His C.K.D, Langmuir D. Adsorption of uranyl onto ferric hydroxides: application of the surface complexation site-binding model. Geochim. Cosmochim. Acta. 1985;49:1931.

 

  1. Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001;175:29.

 

  1. Wignall P.B, Twitchett R.J, Oceanic anoxia and the end Permian mass extinction. Science. 1996;272:1155.

 

  1. Kimura H, Watanabe Y. Ocean anoxia at the Precambrian–Cambrian boundary. Geology. 2001;29:995.

 

  1. Byrne R.H, Kim K. Rare earth precipitation and coprecipitation behavior: the limiting role of PO43+ on dissolved rare earth concentrations in seawater. Geochimica et Acta. 1993;57:519.

 

  1. Nagarajan R, Johns J.M, Nagendra A.R. Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basine, Karnataka, Southern India. Geosciences. 2011;15:9.

 

  1. Chen D.F, Dong W.Q, Qi L, Chen G.Q, Chen X.P. Possible REE constrains on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology. 2003;201:103.

 

  1. Jiang S.Y, Zhao H.X, Chen Y.Q, Yang T, Yang J.H, Ling H.F. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chem. Geol. 2007;244:584.

 

  1. Ma J.L, Wei G.J, Xu Y.G, Long W.G, Sun W.D. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta. 2007;71:3223.

 

  1. Taylor S.R, Mclennan S.M. The Continental Crust: Its Composition and Evolution. 1st ed. (Blackwell, Oxford). 1985.