نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

از مهم‌­ترین آلاینده‌­های پایدار و غیرقابل تجزیه فلزات سنگین هستند، که از سمی‌­ترین آلاینده‌­ها در محیط زیست به‌شمار می‌روند. بنابراین حذف این آلاینده‌­ها از اهمیت خاصی برخوردار است. اورانیم به عنوان یکی از فلزات سنگین، یک رادیونوکلئید طبیعی است که به دلیل سمیت جدی و خاصیت پرتوزایی دارای اثرات مخرب بر روی سلامت انسان و محیط زیست می‌باشد. در این پژوهش رزین آمبرلیت XAD-4 آغشته شده با لیگاند باز شیف بیس 2-هیدروکسی بنزآلدهید 1و2-دی آمینو اتان (L2H) برای جذب اورانیم از محلول آبی به کار برده شد. تأثیر پارامترهای مؤثر مانند pH فاز آبی، زمان تماس، مقدار جاذب و وابستگی دمایی فرایند مورد بررسی قرار گرفتند. نتایج نشان داد که 98‌% یون‌­های اورانیم در شرایط بهینه 5/5pH، مقدار جاذب 1/0 گرم، زمان تماس 60 دقیقه و دمای 25 درجه سانتی‌­گراد، یون اورانیم با غلظت اولیه 20 میلی‌­گرم بر لیتر از 20 میلی‌­لیتر محلول آبی جذب می‌­شود. مقایسه درصد جذب رزین آغشته­ نشده با رزین آغشته ­شده با لیگاند باز شیف نشان می­‌دهد که نمودار جذب یون اورانیم در مقابل pH به سمت مقادیر pH پایین‌­تر (تقریباً 1 5/0ΔpH) تغییر می‌­کند و رفتار جذبی رزین در 5/5pH با افزایش میزان جذب از 52‌% به 98‌% بهبود می‌­یابد. داده‌­های سینتیکی و جذبی به ترتیب با معادله شبه مرتبه دوم و هم‌­دمای فروندلیچ به خوبی مطابقت دارند. بررسی ترمودینامیکی نیز نشان داد که فرایند جذب یون‌ مورد مطالعه بر مبنای آنتروپی است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the adsorption behavior of uranium ion from aqueous solution on the impregnated XAD-4 resin with acidic complexing agent

نویسنده [English]

  • Z. Shiri-Yekta

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

چکیده [English]

One of the most problematic persistent and non-degradable pollutants are heavy metals, which are among the most toxic pollutants in the environment. Therefore, removing these pollutants is of particular importance. Uranium, as one of the heavy metals, is a natural radionuclide that harms human health and the environment. This is due to its serious toxicity and radiation properties. In this research, Amberlite XAD-4 resin impregnated with bis-2-hydroxybenzaldehyde 1,2-diaminoethane (H2L) Schiff base ligand was used for uranium adsorption from aqueous solution. The effect of effective parameters such as aqueous phase pH, contact time, amount of adsorbent and temperature dependence on the process was investigated. The results showed that 98% of uranium ions were absorbed under the optimal conditions of pH5.5, adsorbent amount 0.1 g, contact time 60 min. From 20 mL of aqueous solution at 25 C, uranium ions with a concentration of 20 mg/L were quantitatively removed. Comparing the adsorption percentage of non-impregnated resin with impregnated resin with Schiff base ligand shows a shift in uptake of uranium ions vs. pH curves towards lower pH values (about ΔpH0.51) and the adsorption behavior of the resin at pH5.5 improves with increasing adsorption from 52% to 98%. The kinetic and adsorption data are in good agreement with the pseudo-second-order equation and Freundlich isotherm, respectively. A thermodynamic analysis also revealed that the ion adsorption process is entropy-based.

کلیدواژه‌ها [English]

  • Uranium
  • Adsorption
  • XAD-4 resin
  • Complexing
  1. Yi Z, Yao J. Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis. Journal of Radioanalytical and Nuclear Chemistry. 2012;293:907.

 

  1. Kagaya S, Miwa S, Mizuno T, Tohd K. Rapid coprecipitation technique using yttrium hydroxide for the preconcentration and separation of trace elements in saline water prior to their ICP-AES determination. Analytical Sciences. 2007;23:1021.

 

  1. Wanga J, Li C, Sakanishi K, Nakazato T, Tao H, Takanohashi T, Takarada T, Saito I. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction. Fuel. 2005;84:1487.

 

  1. Tokman N, Akman S, Ozeroglu C. Determination of lead, copper and manganese by graphite furnace atomic absorption spectrometry after separation/concentration using a water-soluble polymer. Talanta. 2004;63:699.

 

  1. Matsubara I, Takeda Y, Ishida K. Simple and rapid determination of trace amounts of gold (III), palladium (II), and platinum (IV) in industrial waste solutions after recovery of noble metals by combined. Analytical Sciences. 2003;19:1427.

 

  1. Kholqi S, Torab Mostaedi M, Fourati Rad H. Fabrication of intelligent polymeric coating for uranium nuclear decontamination. Journal of Nuclear Science and Technology. 2023;102:41 [In Persian].

 

  1. Bagherzadeh M, Saberi D. Magnetically assisted uranyl removal by using magnetic hydroxyapatite nanocomposite. Journal of Nuclear Science and Technology. 2022;101:103 [In Persian].

 

  1. Aghayan H, Yavari R, Ghasemi Mobtaker H, Yousefi T. Studies on the adsorption behavior of uranium onto a synthesized hybrid material based on the spherical SBA-15 and tin tungstomolybdophosphate. Journal of Nuclear Science and Technology. 2019;88:72 [In Persian].

 

  1. Naderi A, Ghoreishi S.M, Firouzzare M, Almasian M.R. Production and Modification of Poly(Styrene-Acrylonitrile)-Polycarbonate Nanofibers and Evaluation of its Adsorption Behavior on Uranium in Aqueous Solutions. Journal of Nuclear Science and Technology. 2019;86:75 [In Persian].

 

  1. Khodadadi Darban A, Seddighi H, Fasihi J, Koleini J. Kinetic, Thermodynamic and Adsorption Mechanism of Uranium (VI) Ions from Aqueous Solutions Using Mg/Al Layered Double Hydroxide. Journal of Nuclear Science and Technology. 2019;86:64 [In Persian].

 

  1. Yarahmadi A, Zarandi M.N, Khani M.H. Investigation of effective parameters of Lanthanum and Cerium Adsorption from Aqueous solutions using Amberlit XAD-7 resin impregnated With DEHPA. Journal of Nuclear Science and Technology. 2022;100:103 [In Persian].

 

  1. Shahida Sh, Ali A. Determination of europium (III) in environmental samples using a flow injection analysis system with on-line preconcentration and spectrophotometric detection. Journal of Radioanalytical and Nuclear Chemistry. 2014;300:423.

 

  1. Shahida Sh, Ali A, Khan M.H. Flow injection on-line spectrophotometric determination of thorium (IV) after preconcentration on XAD-4 resin impregnated with oxytetracycline. Journal of the Iranian Chemical Society. 2014;11:1.

 

  1. Khanchi A.R, Pourmatin A, Akbari N, Mojarabi M.H, Abhari A. Investigation of the Adsorption Behavior of Strontium (II) and Yttrium (III) on the Impregnated XAD-4 Resin with HDEHP in Acidic Media. Journal of Nuclear Science and Technology. 2013;62:59 [In Persian].

 

  1. Shahida Sh, Ali A, Khan M.H. On-line spectrophotometric determination of scandium after preconcentration on XAD-4 resin impregnated with nalidixic acid. Journal of the Iranian Chemical Society. 2013;10:461.

 

  1. Shahida Sh, Ali A, Khan M.H, Saeed M.M. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid. Environmental Monitoring and Assessment. 2013;185:1613.

 

  1. Shahida Sh, Ali A, Khan M.H, Saeed M.M. Flow injection on-line determination of uranium after preconcentration on XAD-4 resin impregnated with dibenzoylmethane. Journal of Radioanalytical and Nuclear Chemistry. 2011;289:929.

 

  1. Ali A, Shahida Sh, Khan M.H, Saeed M.M. Online thorium determination after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine by FI-spectrophotometry. Journal of Radioanalytical and Nuclear Chemistry. 2011;288:735.

 

  1. Saberyan K, Zolfonoun E, Shamsipur M, Salavati-Niasari M. Amberlite XAD-4 Impregnated With a New Pentadentate Schiff base: a Chelating Collector for Separation and Preconcentration of Trace Amounts of Gallium (III) and Indium (III). Acta Chimica Slovenica. 2010;57:222.

 

  1. Kaur H, Agrawal Y.K. Functionalization of XAD-4 resin for the separation of lanthanides using chelation ion exchange liquid chromatography. Reactive and Functional Polymers. 2005;65:277.

 

  1. Çekiç S.D, Filik H, Apak R. Use of an o-aminobenzoic acid-functionalized XAD-4 copolymer resin for the separation and preconcentration of heavy metal (II) ions. Analytica Chimica Acta. 2004;505:15.

 

  1. Hosseini-Bandegharaei A, Allahabadi A, Rahmani-Sani A, Rastegar A, Khamirchi R.A. Mehrpouyan M, Hekmat-Shoar R, Pajohankia Z. Thorium removal from weakly acidic solutions using titan yellow-impregnated XAD-7 resin beads: kinetics, equilibrium and thermodynamic studies. Journal of Radioanalytical and Nuclear Chemistry. 2016;309:761.

 

  1. Hosseini S.H, Rahmani-Sani A, Jalalabadi Y, Karimzadeh M, Hosseini-Bandegharaei A, Kharghani K, Allahabadi A. Preconcentration and determination of ultra-trace amounts of U (VI) and Th (IV) using titan yellow-impregnated Amberlite XAD-7 resin. International Journal of Environmental Analytical Chemistry. 2015;95:277.

 

  1. El-Sofany E.A. Recovery and Separation of Cu (II) and Cd (II) from Nitrate Medium using Impregnated Resin, CYANEX-301/Amberlite XAD-7. Arab Journal of Nuclear Sciences and Applications. 2004;37:111.

 

  1. Lee W, Lee S.E, Lee C.H, Kim Y.S, Lee Y.I. A chelating resin containing 1-(2-thiazolylazo)-2-naphthol as the functional group; synthesis and sorption behavior for trace metal ions. Microchemical Journal. 2001;70:195.

 

  1. Tokalıoğlu Ş, Büyükbaş H, Karta Ş. Preconcentration of trace elements by using 1-(2-pyridylazo)-2-naphthol functionalized Amberlite XAD-1180 resin and their determination by FAAS. Journal of the Brazilian Chemical Society. 2006;17:98.

 

  1. Kumar M, Rathore D.P.S, Singh A.K. Metal ion enrichment with Amberlite XAD-2 functionalized with Tiron: analytical applications. Analyst. 2000;125:1221.

 

  1. Kumar M, Rathore D.P.S., Singh A.K. Quinalizarin anchored on Amberlite XAD-2. A new matrix for solid-phase extraction of metal ions for flame atomic absorption spectrometric determination. Fresenius' Journal of Analytical Chemistry. 2001;370:377.

 

  1. Metilda P, Sanghamitra K, Mary Gladis J, Naidu G.R.K, Prasada Rao T. Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI). Talanta. 2005;65:192.

 

  1. Ozdemir S, Kilinc E. Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination. Microchimica Acta. 2012;178:389.

 

  1. Fouad H, Abu Elenein, Orabi A, Abdulmoteleb S. A new extractant impregnated resin for separation of traces of uranium and thorium followed by their spectrophotometric determination in some geological samples. SN Applied Sciences. 2019;1:309.

 

  1. Rafati H, Noparast M, Khanchi A.R. Selective Sorption of La (III) and Ce (III) from Simulated Solution Containing Metal Ions Using Amberlite XAD-4 Resin Impregnated with Cyanex 302. Iranian Journal of Mining Engineering. 2007;1:23 [In Persian].

 

  1. Çimen A, Torun M, Bilgic A. Immobilization of 4-amino-2-hydroxyacetophenone onto silica gel surface and sorption studies of Cu (II), Ni (II), and Co (II) ions. Desalination and Water Treatment. 2015;53:2106.

 

  1. Wang Q, Gao W, Liu Y, Yuan J, Zhijun X, Zeng Q, Li Y, Schröder M. Simultaneous adsorption of Cu (II) and SO42− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chemical Engineering Journal. 2014;250:55.

 

  1. Radi S, Basbas N, Tighadouini S, Bacquet M, Degoutin S, Cazier F. New amine-modified silica: Synthesis, characterisation and its use in the Cu (II)-Removal from aqueous solutions. Progress in Nanotechnology and Nanomaterials. 2013;2:108.

 

  1. Ghaedi M, Sharifpour E. Chemically modified nano silica gel with 2-((3silylpropylimino) methyl)-2-hydroxy-1-naphthol (SPIMHN) as good and efficient adsorbent for solid phase extraction. Desalination and Water Treatment. 2012;41:315.

 

  1. Fathi S.A.M, Parinejad M, Yaftian M.R. Multidentate nitrogen/oxygen donor ionophores; their use as selective extracting and mobile-carrier agents for copper (II) ions. Separation and Purification Technology. 2008;64:1.

 

  1. Shiri-Yekta Z, Yaftian M.R. Anion control selectivity of neutral N4-type schiff base extractants towards transition metal ions. Iranian Journal of Chemistry and Chemical Engineering. 2010;29:11.

 

  1. Fathy M, Moghny Th.A, Allah A.E.A, Alblehy A.E. Cation exchange resin nanocomposites based on multi-walled carbon nanotubes. Applied Nanoscience. 2014;4:103.

 

  1. Ahmadi S.J, Akbari N, Shiri-Yekta Z, Mashhadizadeh M.H, Pourmatin A. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: a new inorganic ion exchanger. Journal of Radioanalytical and Nuclear Chemistry. 2014;299:1701.

 

  1. Taheri M, Khajenoori M, Shiri-Yekta Z, Zahakifar F. Application of Plantain leaves as a bio-adsorbent for biosorption of U(VI) ions from wastewater. Radiochim. Acta. 2023. doi.org/10.1515/ract-2022-0109.

 

  1. Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R. Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering. 2016;39:1899.

 

  1. Mahmoud M.E, Nabil G.M, Mahmoud S.M.E. High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II). Journal of Chemical Engineering & Process Technology. 2013;4:1.

 

  1. Li X, Li F, Jin Y, Jiang C. The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. Journal of Molecular Liquids. 2015;209:413.

 

  1. Deshmukh P, Sar S.K, Ghosh P.K. Efficient exclusion of uranyl ion from aqueous medium by a novel magnetic bio adsorbent (Phyllanthus emblica bark). Groundwater for Sustainable Development. 2021;14:100625.

 

  1. Taheri M, Khajenoori M, Shiri-Yekta Z, Zahakifar F. Study of biosorption of uranyl from aqueous solution by tea waste using RSM method. Journal of Nuclear Science and Technology. 2023. Article in Press [In Persian].

 

  1. Sabanovic E, Muhic-Sarac T, Nuhanovic M, Memic M. Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. Journal of Radioanalytical and Nuclear Chemistry. 2019;319:425.

 

  1. Aly Z, Luca V. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. Journal of Radioanalytical and Nuclear Chemistry. 2013;295:889.