نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 51113-14399، تهران- ایران

چکیده

در مطالعه برهم‌کنش یون‌های هیدروژن گسیل یافته از دستگاه پلاسمای کانونی بر روی مواد منتخب برای دیواره اول توکامک، مشخصه‌یابی باریکه یونی از اهمیت فراوانی برخوردار است. بدین منظور، یک آشکارساز فارادی‌کاپ برای دستگاه پلاسمای کانونی MTPF طراحی، ساخته و پارامترهای الکتریکی آن استخراج گردید. در سیگنال‌های به‌دست آمده از فارادی‌کاپ دو پیک قابل مشاهده است که پیک اول، مربوط به برخورد پرتوایکس و پیک دوم نیز در اثر برخورد باریکه یونی هیدروژن به الکترود گرافیتی فارادی‌کاپ می‌باشد. با استفاده از روش زمان پرواز، انرژی میانگین باریکه یونی هیدروژن مقدار 46keV  همچنین پارامتر شار و شارش باریکه در محل روزنه ورودی فارادی‌کاپ به ترتیب مقدار 1024×2/37 ions.m-2.s-1 و 1016×1/45 ‌ ions.m-2.s-1به‌دست آمد. مشخصات دستگاه پلاسمای کانونی MTPF در کد لی جای‌گذاری گردیده و نتایج کد برای مشخصات باریکه یونی تطابق خوبی با نتایج تجربی به‌دست آمده از سیگنال فارادی‌کاپ دارد. همچنین سایر مشخصات باریکه یونی هیدروژن نیز استخراج گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Characterization of hydrogen ion beam emitted from MTPF plasma focus device using faraday cup and Lee code

نویسندگان [English]

  • D. Rostamifard
  • N. Pishbin
  • A. Nasiri
  • M.M.R. SeyedHabashi
  • M. Akbari Nasaji

Plasma and Nuclear Fusion Research Institute, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14399-51113, Tehran - Iran

چکیده [English]

In studying the interaction of hydrogen ions emitted from a plasma focus device with selected materials for the first wall of a tokamak, characterizing the ion beam is crucial. For this purpose, a Faraday-cup detector was designed and built for the MTPF plasma focus device, and its electrical parameters were extracted. The signals obtained from the Faraday-cup exhibited two peaks: the first peak corresponds to radiation impact, and the second peak is due to the impact of the hydrogen ion beam on the graphite electrode of the Faraday-cup. Using the time-of-flight (TOF) method, the average energy of the hydrogen ion beam was determined to be 46 keV. The flux parameters of the beam at the aperture of the Faraday-cup were 2.37×10^24 ions.m^-2.s^-1 and 1.45×10^16 ions.m^-2, respectively. The specifications of the MTPF plasma focus device were incorporated into the Lee model code, and the resulting ion beam specifications from the code showed good agreement with the experimental results obtained from the Faraday-cup signal. Additionally, other characteristics of the hydrogen ion beam were extracted.

کلیدواژه‌ها [English]

  • Faraday-cup
  • Time of flight (TOF) method
  • Flux and fluence ion beam
  • Lee model code
  1. 1. Akel M,Alsheikh Salo S, Ismael S, Saw SH, Lee S. Deuterium plasma focus as a tool for testing materials of plasma facing walls in thermonuclear fusion reactors. J. Fusion Energ. 2016;35:694.

     

    1. Shirokova V, Laas T, Ainsaar A, Priimets J, Ugaste Ü, Demina E.V, Pimenov V.N, Maslyaev S.A, Dubrovsky A.V, Gribkov V.A, Scholz M, Mikli V. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. Journal of Nuclear Materials. 2013;435:181.

     

    1. Seyedhabashi M.M.R, Asgarian M.A, Rasouli C, Sedighi F. Radiation damage of graphite surface, used in first-wall and divertor of tokamaks, irradiated by hydrogen and argon in plasma focus device. IEEE Transactions on Plasma Science. 2022;50.

     

    1. Gribkov V.A, Demina E.V, Kazilin E.E, Latyshev S.V, Maslyaev S.A, Pimenov V.N, Paduch M, Zielinska E, Laas T. Testing of materials perspective for nuclear fusion reactors with inertial plasma confinement by Plasma Focus and laser devices. J. Phys.2019;Conf. Ser. 1347,012071.

     

    1. Latyshev S.V, Gribkov V.A, Maslyaev S.A, Pimenov V.N, Paduch M, Zielinska E. Generation of shock waves in materials science experiments with dense plasma focus device. Inorganic Materials: Applied Research. 2015;6:91.

     

    1. Soto L, Silva P, Moreno J, Silvester G, Zambra M, Pavez C, Altamirano L, Bruzzone H, Barbaglia M, Sidelnikov Y, Kies W. Research on pinch plasma focus devices of hundred of kilojoules to tens of joules. J. Phys. 2004;34:1814.

     

    1. Verma R, Rawat R.S, Lee P, Tan A.T.L, Shariff H, Ying G.J, Springham S.V, Talebitaher A, Ilyas U, Shyam A. Neutron emission characteristics of nx-3 plasma focus device: speed factor as the guiding rule for yield optimization. IEEE Trans. Plasma Sci. 2012;40:3280.

     

    1. Dubrovsky A.V, Gribkov V.A, Pimenov V.N, Scholz M. Comparative characteristics of four small dense plasma focus devices. AIP Conf. Proc. 2008;996:103.

     

    1. Freeman B. In Proceedings of the 4th Symposium on Current Trends in International Fusion Research. National Research Council of Canada. 2007.

     

    1. Bhuyan M, Neog N.K, Mohanty S.R, Rao C.V.S, Raole P.M. Characterization of the neon ion beam emitted from plasma focus device. Phys. Plasmas. 2011;18:033101.

     

    1. Tan K.S, Mah R.J, Rawat R.S. Dense plasma focus device based high growth rate room temperature synthesis of nanostructured zinc oxide thin films. IEEE Trans. Plasma Sci. 2015;43:2539.

     

    1. Khan I.A, Hassan M, Hussain T, Ahmad R, Zakaullah M, RS Rawat R.S. Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite films by dense plasma Focus device. Appl. Surf. Sci. 2009;255:6132.

     

    1. Siddiqui J, Hussain T, Ahmad R, Ali W, Hussnain A, Ayub R. Growth and study of plasma assisted nanostructured hard tantalum nitride thin films. J. Fusion Energ. 2015;34:1193.

     

    1. Siddiqui J, Hussain T, Ahmad R, Khalid N. Synthesis of ZrSiN composite films using a plasma focus device. Chin. Phys. B 2015;24:065204.

     

    1. Rawat R.S. Dense plasma focus from alternative fusion source to versatile high energy density plasma source for plasma nanotechnology. J. Phys: Conf. Ser. 2015;591:012021.

     

    1. Khan I.A, Jabbar S, Hussain T, Hassan M, Ahmad R, Zakaullah M, Rawat R.S. Deposition of zirconium carbonitride composite films using ion and electron beams emitted from plasma focus device. Nucl. Instrum. Methods Phy. Res. B 2010;268:2228.

     

    1. Lee S, Saw S.H. Plasma focus ion beam fluence and flux—Scaling with stored energy. Physics of Plasmas. 2012;19:112703.

     

    1. Akel M, Salo S.A, Saw S.H, Lee S. Properties of Ion Beams Generated by Nitrogen Plasma Focus. J. Fusion Energ. 2014;33:189.

     

    1. Akel M, AL-Hawat S, Ahmad M, Ballul Y, Shaaban S. Features of Pinch Plasma, Electron, and Ion Beams That Originated in the AECS PF-1 Plasma Focus Device. Plasma. 2022;5:184.

     

    1. Barbagli M, Giovachini R, Milanese M. Dense plasma focus: different cathode geometries and their influence on the hard x-ray production. Plasma Physics and Controlled Fusion. 2023;65.

     

    1. Etminan M, Aghamir M. Angular distribution of ion beams energy and flux in a plasma focus device operated with argon gas. Vacuum. 2021;191:110352.

     

    1. Damideh V, Ali J, Saw S.H, Rawat R.S, Lee P. Fast Faraday cup for fast ion beam TOF measurements in deuterium filled plasma focus device and correlation with Lee model. Physics of Plasmas. 2017;24:063302.

     

    1. Mohanty S.R, Bhuyan H, Neog N.K, Rout R.K, Hotta E. Development of Multi Faraday Cup Assembly for Ion Beam Measurements from a Low Energy Plasma Focus Device. Jpn. J. Appl. Phys. 2005;44:51992005.

     

    1. Pestehe S.J, Mohammadnejad M, Irani Mobaraki S. Dynamic Faraday cup signal analysis and the measurement of energetic ions emitted by plasma focus. Physics of Plasmas. 2014;21:033504.

     

    1. Mal K, Kumar S, Rodrigues G, Singh R. Study and improvements of a radially coupled coaxial Fast Faraday cup design toward lower intensity beams. AIP Advances. 2022;12:125223.

     

    1. Bhuyan H, Chuaqui H, Favre M, Mitchell I, Wyndham E. Ion beam emission in a low energy plasma focus device operating with methane. J. Phys. D: Appl. Phys. 2005;38:1164.

     

    1. Gerdin G, Stygar W, Venneri F. Faraday cup analysis of ion beams produced by a dense plasma focus. Journal of Applied Physics. 1981;52:3269.

     

    1. Lee S. Plasma Focus Radiative Model: Review of the Lee Model Code. J. Fusion Energ. 2014;33:319.