نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، صندوق پستی: 68151-44316، خرم آباد - ایران

2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 51113-14399، تهران - ایران

3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، صندوق پستی: 51818-57561، ارومیه - ایران

چکیده

فن‌آوری پلاسمای سرد اتمسفری به عنوان جایگزینی مناسب برای روش‌های سنتی و سازگار با محیط زیست کاربردهای گسترده‌ای در کشاورزی پیدا کرده است. در این تحقیق، اثر تیمار پلاسمای RF روی صفات جوانه‌زنی دانه روغنی کلزا در پاسخ به تنش خشکی مورد بررسی قرار گرفته است. بدین منظور، آزمایش به‌صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی با سه تکرار در سال 1401 اجرا گردید. عامل پلاسما در هفت سطح و عامل تنش خشکی در سه سطح 0/3-، 0/5- و 0/9- مگاپاسکال بود. نتایج نشان داد که سطوح تنش خشکی 0/5- و 0/9- مگاپاسکال به‌ترتیب سبب کاهش معنی‌دار 50/16 و 61/92 درصدی طول ریشه‌چه، 8/42 و 71/57 درصدی طول ساقه‌چه، 21/79 و 85/46 درصدی وزن خشک ریشه‌چه، 4/87 و 39/08 درصدی وزن خشک ساقه‌چه، 16 و 24 درصدی، درصد جوانه‌زنی در مقایسه با سطح خشکی 0/3- مگاپاسکال گردید. در این آزمایش رشد طولی ساقه‌چه در مقایسه با رشد طولی ریشه‌چه بیش‌تر تحت اثر خشکی شدید قرار گرفت. لذا می‌تواند ویژگی مناسبی برای ارزیابی تحمل به تنش خشکی باشد. قرار گرفتن بذور کلزا در تیمارهای پلاسمایی 200 وات در زمان نه دقیقه بیش‌ترین اثر تحریک‌کننده‌ای را با توجه به درصد جوانه‌زنی و رشد گیاه‌چه‌ها در کلزا نشان داد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of germination characteristics of oilseed rape in response to drought stress due to indirect treatment with low-pressure cold plasma

نویسندگان [English]

  • R. Khalilzadeh 1
  • E. Khalilzadeh 2
  • Z. Dehghani 2
  • A.R. Pirzad 3
  • A. Chakhmachi 2

1 Department of Plant Production and Genetics Engineering, Faculty of Agriculture, Lorestan University, P.O.Box: 68151-44316, Khorramabad - Iran

2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran - Iran

3 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, P.O.Box: 57561-51818, Urmia - Iran

چکیده [English]

Cold atmospheric plasma technology has found wide applications in agriculture as a suitable alternative to traditional and environmentally friendly methods. In this research, the effect of RF plasma treatment on oilseed rape germination characteristics in response to drought stress has been investigated. This study was conducted as a factorial experiment based on a completely randomized design in 1401. The plasma factor in seven levels (P1, P2, P3, P4, P5, P6, and P7) and the drought stress factor in three levels were -0.3, -0.5, and -0.9 MPa. The results showed that drought stress levels of -0.5 and -0.9 MPa caused a significant decrease of 50.16 and 61.92% of root length, 8.42 and 71.57% of shoot length, 21.79 and 85.46% of root dry weight, 4.87% and 39.08% of stem dry weight, 16% and 24% of germination percentage compared to drought level -0.3 MPa. In this experiment, the longitudinal growth of the stem compared to the longitudinal growth of the root was more affected by severe drought. Therefore, it can be a suitable feature to evaluate drought tolerance. Exposure of canola seeds to plasma treatments of 200 W for nine minutes showed the most stimulating effect regarding the percentage of germination and seedling growth in canola.

کلیدواژه‌ها [English]

  • Cold plasma
  • Drought stress
  • Rapeseed
  • Seedling
  1. Taylor A.G, Allen P.S, Bennett M.A, Bradford K.J, Burris J.S, Misra M.K. Seed enhancements. Seed Sci. Res. 1998;8:245–256.

 

  1. Halmer P. Seed Technology and Seed Enhancement. Acta Hortic. 2008;771:17–26. Processes 2020;8:1002 15 of 20.

 

  1. Elsayed B.B, Hassan M.M, El Ramady H.R. Phylogenetic and characterization of salt-tolerant rhizobial strain nodulating faba bean plants. Afr. J. Biotechnol. 2013;12:4324–4337.

 

  1. Araújo S.D, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A. Physical methods for seed invigoration: Advantages and challenges in seed technology. Front. Plant Sci. 2016;7:646.

 

  1. Attri P, Razzokov J, Yusupov M, Koga K, Shiratani M, Bogaerts A. Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study. Int. J. Biol. Macromol. 2020;148:657–665.

 

  1. Attri P, Kim M, Choi E.H, Cho A.E, Koga K, Shiratani M. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays. Phys. Chem. Chem. Phys. 2017;19:25277–25288.

 

  1. Attri P, Tochikubo F, Park J.H, Choi E.H, Koga K, Shiratani M. Impact of Gamma rays and DBD plasma treatments on wastewater treatment. Sci. Rep. 2018;8:2926.

 

  1. Park J.H, Kim M, Shiratani M, Cho A.E, Choi E.H, Attri P. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet. Sci. Rep. 2016;6:35883.

 

  1. Kumar N, Attri P, Choi E.H, Sup Uhm H. Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Adv. 2015;5:14670–14677.

 

  1. Ohta T. Plasma in agriculture. Cold plasma in food and agriculture. 2016;205-221.

 

  1. Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasmaagriculture from laboratory to farm: A review. Processes. 2020;8(8):1002.

 

  1. Zhang S, Chao Y, Zhang C, Cheng J, Li J, Ma N. Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Agriculture, Ecosystems & Environment. 2010;139(4):463-468.

 

  1. Finch-Savage W.E, Bassel G.W. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany. 2016;67(3):567-591

 

  1. Munz E, Rolletschek H, Oeltze‐Jafra S, Fuchs J, Guendel A, Neuberger T, Ortleb S, Jakob P.M, Borisjuk L. A functional imaging study of germinating oilseed rape seed. New Phytologist. 2017;216(4)1181-1190.

 

  1. Nishime T.M.C, Werner J, Wannicke N, Mui T.S.M, Kostov K.G, Weltmann K.D, Brust H. Characterization and Optimization of a Conical Corona Reactor for Seed Treatment of Rapeseed. Applied Sciences. 2022;12(7):3292.

 

  1. Ling L.I, Jiangang L.I, Hanliang S.H.A.O, Yuanhua D.O.N.G. Effects of low-vacuum helium cold plasma treatment on seed germination, plant growth and yield of oilseed rape. Plasma Science and Technology. 2018;20(9):095502.

 

  1. Islam S, Farjana B.O, Sajib S.A, Nepal C.R, Reza A, Hasan M, Talukder M.R, Kabir A.H. Effects of LPDBD plasma and plasma activated water on germination and growth in rapeseed (Brassica napus). Gesunde Pflanzen. 2019;71(3):175-185.

 

  1. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Scientific Reports. 2015:5(1):13033.

 

  1. Jamaati-e-Somarin S, Zabihi-e-Mahmoodabad R, Yari A. Reaction of canola cultivars (Brassica napus L.) to water deficit on seed germination and seedling growth stage. Word Applied Science Journal. 2010;10:699-702.

 

  1. Omidi H, Khazaei F, Hamzi Alvanagh S, Heidari-Sharifabad H. Improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stresses. Plant Ecophysiology. 2009;3:151-158.

 

  1. Alebrahim M.T, Janmohammadi M, Sharifzade F, Tokasi S, Evaluation of salinity and drought stress effects on germination and early growth of maize inbred lines (Zea mays L.). Electronic Journal of Crop Production. 2008;1(2):35-43.

 

  1. Gholizadeh E, Aynaband A, Hassanzadeh A, Noormohammadi G, Bernousi I. Effect of drought stress, nitrogen amount and plant densities of grain yield, rapidity and period of grain filling in sunflower. Journal of Agricultural Science and Sustainable Production. 2012;22(1):129-143.

 

  1. Shekari F, Khoie R, Javanshir A, Alyari H, Shkiba M.R. Effect of Sodium chloride salinity on germination of rapeseed cultivars. Turkish Journal of Field Crops. 2000;5:21-28.

 

  1. Benadjaoud A, Dadach M, El-Keblawy A, Mehdadi Z. Impacts of osmopriming on mitigation of the negative effects of salinity and water stress in seed germination of the aromatic plant Lavandula stoechas L. Journal of Applied Research on Medicinal and Aromatic Plants. 2022;31:100407.

 

  1. Nelson C.P. Water potential: The key to successful seed priming. Decagon Devices, Inc. AN4101- 10. 2000.

 

  1. Ansari O, Azadi M.S, Sharif-Zadeh F, Younesi E. Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. Journal of Stress Physiology & Biochemistry. 2013;9(3):61-71.

 

  1. Islam S, Farjana B.O, Sajib S.A, Nepal C.R, Reza A, Hasan M, Talukder M.R, Kabir A.H. Effects of LPDBD plasma and plasma activated water on germination and growth in rapeseed (Brassica napus). Gesunde Pflanzen. 2019;71(3):175-185.

 

  1. Iranbakhsh A, Ghoranneviss M, Oraghi Ardebili Z, Oraghi Ardebili N, Hesami Tackallou S, Nikmaram H. Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol Plant. 2017;61(4):702–708.

 

  1. Será B, Stranák V, Serý M, Tichý M, Spatenka P. Germination of Chenopodium album in response to microwave plasma treatment. Plasma Sci Technol. 2008;10:506.

 

  1. Iranbakhsh A, Ardebili N.O, Ardebili Z.O, Shafaati M, Ghoranneviss M.Non-thermal plasma induced expression of Heat Shock Factor A4A and Improved Wheat (Triticum aestivum L.) growth and resistance against Salt Stress. Plasma Chem Plasma Process. 2018;38:29-44.

 

  1. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L). Plasma Chem Plasma Process. 2015;35:659-676.

 

  1. Zhou Z.W, Huang Y.F, Yang S.Z, Chen W. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agri. Sci. 2011;2:23-27.

 

  1. Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technol. 2008;99:5104–5109.

 

  1. Yin M.Q, Huang M.J, Ma B.Z, Ma T.C. Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci. Techno. 2005;7:3143-3147.

 

  1. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Scientific Reports. 2015;5:13033.

 

  1. Fry S.C, Aldington S, Hetherington P.R, Aitken J. Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol. 1993;103:1.

 

  1. Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N, Ghoranneviss M, Safari N. Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiologiae Plantarum. 2018;40:154.

 

  1. Roy N, Hasan M, Talukder M, Hossain M, Chowdhury A. Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chemistry and Plasma Processing. 2018;38:13–28.

 

  1. Volin J.C, Denes F.S, Young R.A, Park S.M. Modification of seed germination performance through cold plasma chemistry technology. Crop Science. 2000;40:1706–1718.

 

  1. Islam S, Binta Omar F, Ahmed Sajib S, Chandra Roy N, Reza A, Hasan M, Rashid Talukder M, Humayan Kabir A. Effects of LPDBD plasma and plasma activated water on germination and growth in rapeseed (Brassica napus). Gesunde Pflanzen. 2019.