نوع مقاله : مقاله پژوهشی
نویسندگان
1 پژوهشکده فوتونیک و فناوریهای کوانتومی، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی، صندوق پستی: 836-14395، تهران- ایران
2 گروه ماده چگال، دانشکده فیزیک، دانشگاه الزهراء (س)، کدپستی: 1993893973، تهران- ایران
چکیده
در این پژوهش، آشکارسازهای تابش فرابنفش با پاسخ قابل کنترل بر پایهی لایه نازک متشکل از نانومیلههای نسبتاً عمود اکسید روی (ZnO) ساخته شدند. نانومیلههای عمودی به روش حمام شیمیایی بر روی زیرلایههای شیشه دانهگذاری شده رشد داده شدند. سپس با استفاده از تکنیکهای میکروسکوپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD)، طیفسنجی فوتولومینسانس (PL) و پراش انرژی پرتو ایکس (EDAX) مشخصهیابی شدند. اثر تغییر محیط و مساحت الکترودهای شانهای درهم تنیده بر پاسخدهی و جریان تاریک آشکارساز تابش UV بر پایهی نانومیلههای ZnO بررسی شد. پاسخدهی آشکارساز با کاهش محیط الکترود و ثابت نگه داشتن مساحت ناحیه فعال روند نزولی نشان داد. با ثابت نگه داشتن محیط الکترود در مقدار بیشینه دیده میشود که پاسخ آشکارساز با افزایش گاف بین انگشتهای الکترودها افزایش مییابد به طوریکه در فاصله گاف µm 160 به مقدار بیشینهاش به بزرگی 1-AW 105 با اعمال ولتاژ بایاس V 2 میرسد. سازوکار حاکم بر تغییر پاسخدهی با تغییر هندسهی الکترودها بر اساس تغییر مساحت نواحی تهی حاصله از سدهای شاتکی بین طلا و اکسیدروی و سدهایی که در مرز بین میلههای ZnO به سبب جذب و واجذب گونههای اکسیژن شکل میگیرد، پیشنهاد میشود. این پژوهش روشی ساده برای بهینهسازی پاسخدهی افزارههای آشکارسازی به منظور کاربردهای عملی ارائه میدهد.
کلیدواژهها
عنوان مقاله [English]
Investigation the effect of electrode geometry on the response of the UV photodetector based on ZnO nanorods
نویسندگان [English]
- Z.S. Hosseini 1
- A. Mortezaali 2
1 Photonic and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14395-836, Tehran - Iran
2 Department of Condensed Matter, Faculty of Physics, Alzahra University, Postal Code: 1993893973, Tehran - Iran
چکیده [English]
In this research, ultraviolet (UV) photodetectors based on aligned ZnO nanorods thin films with controllable responsivity were fabricated. Aligned nanorods were grown on seeded glass substrates by the chemical bath method. Then, they were characterized using a Scanning Electron Microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL), and Energy Dispersive X-ray Analysis (EDAX). The effect of perimeter and area variation of interdigitated electrodes on the responsivity of UV ZnO nanorods-based photodetector was investigated. With a decreasing electrode perimeter and maintaining the same area, the responsivity decreases. By keeping the perimeter constant at the maximum value, it is observed that the response of the photodetector is increased with increasing the gap between the fingers of the electrode so that the gap of 160 µm reaches the maximum as high as 105 AW-1 at 2 V bias voltage. The dominant mechanism for change of responsivity with electrode geometry is variation in the area of depletion regions resulting from Schottky barriers between ZnO and Au and the formed barriers between ZnO nanorods due to adsorption and desorption of oxygen species. This research demonstrates a simple way of optimizing photodetector devices' responsivity for practical applications.
کلیدواژهها [English]
- UV photodetector
- Electrode geometry
- Aligned nanorods
- Zinc Oxide
- Interdigitated comb-like electrodes
- Sang L, Liao M, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors. 2013;13:10482-10518.
- Liu K, Sakurai M, Aono M. ZnO-based ultraviolet photodetectors. Sensors. 2010;10:8604-8634.
- Zhang W, Jiang D, Guo Z, Yang X, Hu N, Duan Y, Gao Sh, Liang Q, Zheng T, Lv J. Controlling responsivity depends on change of interdigital electrodes in planar MgZnO UV photodetectors. Superlattices Microstruct. 2018;115:177-182.
- Cao Y, Cai K, Hu P, Zhao L, Yan T, Luo W, Zhang X, Wu X, Wang K, Zheng H. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015;5:1-7.
- Hosseini Z.S, Bafrani H.A, Naseri A, Moshfegh A.Z. High-performance UV‐Vis-NIR photodetectors based on plasmonic effect in Au nanoparticles/ZnO nanofibers. Appl. Surf. Sci. 2019;483:1110-1117.
- Liu X, Gu L, Zhang Q, Wu J, Long Y, Fan Z. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014;5:4007.
- Boruah B.D. Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019;1:2059-2085.
- Hu J, Chen J, Ma T, Li Z. Research advances in ZnO nanomaterials-based UV photodetectors: A Review. Nanotechnology. 2023;34:232002.
- Babamoradi M, Sadeghi H, Azimirad R, Safa S. Enhancing photoresponsivity of ultraviolet photodetectors based on ZnO/ZnO: Eu (x= 0, 0.2, 1, 5 and 20 at.%) core/shell nanorods. Optik. 2018;167:88-94.
- Huang J, Yang L, He S. High-performance low-voltage transparent metal-semiconductor-metal ultraviolet photodetectors based on ultrathin gold asymmetric interdigitated electrodes. Micromachines. 2023;14:1447.
- Pallavolu M.R, Maddaka R, Viswanath S.K, Banerjee A.N, Kim M.D, Joo S.W. High-responsivity self-powered UV photodetector performance of pristine and V-doped ZnO nano-flowers. Opt. Laser Technol. 2023;157:108776.
- Gu X, Zhang M, Meng F, Zhang X, Chen Y, Ruan S. Influences of different interdigital spacing on the performance of UV photodetectors based on ZnO nanofibers. Appl. Surf. Sci. 2014;307:20-23.
- Shasti M, Dariani R. Study of growth time and post annealing effect on the performance of ZnO nanorods ultraviolet photodetector. J. Appl. Phys. 2017;121:064503.
- Akgun M.C, Kalay Y.E, Unalan H.E. Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 2012;27:1445-1451.
- Greene L.E, Law M, Tan D.H, Montano M, Goldberger J, Somorjai G, Yang P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano lett. 2005;5:1231-1236.
- Yang C, Tang L, Li Q, Bai A, Wang Y, Yu Y. Preparation of monodisperse colloidal ZnO nanoparticles and their optical properties. Nano. 2015;10:1550074.
- Damberga D, Viter R, Fedorenko V, Iatsunskyi I, Coy E, Graniel O, Balme S, Miele P, Bechelany M. Photoluminescence study of defects in ZnO-coated polyacrylonitrile nanofibers. J. Phys. Chem. C. 2020;124:9434-9441.
- Ferrer J.C, Alonso J.L, De Ávila S.F. Electrical characterization of photodetectors based on Poly
(3-hexylthiophene-2, 5-diyl) layers. Sensors. 2014;14:4484-4494.
- Brillson L.J. Semiconductors and Semimetals. 1th ed. (Elsevier, Amsterdam). 2013;105-157.
- Ewen N.S.D, Gundersen E. Appl. Phys. 11th ed. (Pearson, U.S. 2016).
- Chen M, Hu L, Xu J, Liao M, Wu L, Fang X. ZnO hollow‐sphere nanofilm‐based high‐performance and low‐cost photodetector. Small. 2011;7:2453-2449.
- Weng W, Chang S, Hsu C, Hsueh T, Chang S. A lateral ZnO nanowire photodetector prepared on glass substrate. J. Electrochem. Soc. 2009;157:K30.
- Gogurla N, Sinha A.K, Santra S, Manna S, Ray S.K. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 2014;4:6483.