نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 3486-11365، تهران ـ ایران

چکیده

در این مقاله، مطابق با محاسبات نظری، یک طراحی برای افزایش چگالی دوتریم در تیتانیم بیش از مقدار اولیه آن ارائه شده است. در این طرح از پلاسمای دوتریم برای غنی‌‌سازی استفاده می‌‎شود. هدف غنی‌‌سازی، دیسکی از جنس مس که پوششی از تیتانیم بر روی آن انباشت شده است، می‌‎باشد. به منظور کاشت یون دوتریم در این هدف، دیسک موردنظر در پلاسمای دوتریم غوطه‌‎‌‌ور می‌‎شود. هدف به یک مدولاتور پرقدرت متصل و تحت تأثیر پالس‌های ولتاژ منفی آن می‌‎باشد. در هنگام اعمال پالس‌‎های منفی، یون‌‏های دوتریم به سمت هدف شتاب گرفته و در آن نفوذ کرده و کاشت می‌‌‌شوند. به ‏دلیل ضریب پخش کم در محیط تیتانیم، یون‌‌های فرودی به سرعت به داخل منتشر نمی‌‏شوند، در نتیجه در آغاز فرایند کاشت، در نزدیکی سطح هدف انباشته می‌‎شوند. معادله انتشار، توزیع پیش‌بینی‌شده یون‌ها را در داخل هدف توصیف می‌کند و مشخص شده است که غلظت دوتریم در تیتانیم را می‌توان در عرض چند هفته به‌طور قابل‌توجهی افزایش داد و چندین مرتبه از مقدار اولیه فراتر رفت.

کلیدواژه‌ها

عنوان مقاله [English]

Study of deuterium ion implantation dynamics in the plasma immersion method for the titanium thin film used in the deuterium target

نویسندگان [English]

  • M. Azarsh
  • A.R. Grayli

Physics and accelerators Research School, Nuclear Science and Technology Research Institute, AEOI,, P.O.Box: 11365-3486, Tehran – Iran

چکیده [English]

This study proposes a design, based on theoretical calculations, to increase the density of deuterium in titanium beyond its initial value using a deuterium plasma enrichment plan. The target for enrichment is a copper disc coated with titanium, which is immersed in deuterium plasma to implant deuterium ions. The target is connected to a high-power modulator and subjected to negative voltage pulses. These pulses accelerate deuterium ions towards the target, causing them to penetrate and implant into it. Initially, due to the low diffusion coefficient of titanium, the incident ions do not diffuse quickly and accumulate near the target surface. The diffusion equation describes the predicted distribution of ions inside the target, revealing that the deuterium concentration in titanium can be significantly increased within a few weeks, exceeding the initial value by several orders of magnitude.

کلیدواژه‌ها [English]

  • Deuterium target
  • Theoretical model
  • Ion implantation
  • Plasma density
  1. Monnin C, Ballanger A, Sciora E, Steinbrunn A, Alexandre P, Pelcot G. Characterization of deuteride titanium targets used in neutron generators. Nucl. Instrum. Methods Phys. Res. A, 2000;453:493-500.

 

  1. Falabella S, Tang V, Ellsworth J.L, Mintz J.M. Protective overcoatings on thin-film titanium targets for neutron generators. Nucl. Instrum. Methods Phys. Res. A, 2014;736:107–111.

 

  1. Bystritsky V.M, Dudkin G.N, Filipowicz M, Tuleushev Yu.Zh, Zhakanbaev E.A. Targets of deuterides TiD2, ZrD2, NbD, and CrD2 with different structures used in experiments on the study of pd and ddreactions at astrophysical energies. Nucl. Instrum. Methods Phys. Res. A, 2016;810:80–85.

 

  1. Lee C.H, Oh B, Chang D, Jang D, In S.Y, Park J, Hong K. Classical and quantum mechanics. Gen. Phys. 2014;46:S71.

 

  1. Gunnersen E.M, James G. On the efficiency of the reaction H3(d,n)He4 in Titanium Tritide bombarded with Deuterons. Nucl. Instrum. Methods Phys. Res. A, 1960;8:173-184.

 

  1. Mandrino D, Paulin I, kapin S. Scanning electron microscopy, X-Ray Diffraction and Thermal Analysis Study of the TiH2 Foaming Agent. Mater. Charact. 2012;72:87−93.

 

  1. Ma M, Liang L, Wang L, Xiang W, Tan X, Wang Y, Cheng Y, Tang B. Phase Transformations of Titanium Hydride in Thermal Desorption Process with Different Heating Rates. Int. J. Hydrogen Energy. 2015;40:8926−8934.

 

  1. Wang C, Zhang Y, Wei Y, Xiao S, Chen Y, Mei L. XPS Study of the Deoxidization Behavior of Hydrogen in TiH2 Powders. Powder Technol. 2016;302:423−425.

 

  1. Zhang Y, Zhuang X, Zhu Y, Li L, Dong J, Wan N. Synergistic Effects of TiH2 and Pd on Hydrogen Desorption Performances of MgH2. Int. J. Hydrogen Energy. 2015;40:16338−16346.

 

  1. Sakintuna B, Lamari Darkrim F, Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy. 2007; 32:1121−1140.

 

  1. Huang N, Wan G.J, Leng Y, Leng Y.X, Sun H, Yang P, Chen J.Y, Wang J, Chu P.K. Deformation behavior of titanium nitride film prepared by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2002;156:170–175.

 

  1. Lu T, Qiao Y, Liu X. Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus. 2012;2:325–336.

 

  1. Briehl B, Urbassek H, Zeitschrift M. Simulation of sheath dynamics and current nonuniformity in plasma immersion ion implantation of a patterned surface. J. Appl. Phys. 2022;210:434.

 

  1. Yeh F.B. A semi-analytical method to study the temperature evolutions of a slab and a semi-infinite target for plasma immersion ion implantation. Int. J. Heat Mass Transfer. 2007;50:789-798.

 

  1. Andres A. Fundamental of pulsed plasmas for materials processing. Surf. Coat. Technol. 2004;183:301-311.

 

  1. Chen Y, Xu C, Wng C, Bilek M, Cheng X. An effective method to optimize plasma immersion ion implantation: Sensitivity analysis and design based on low-density polyethylene. Plasma Process. Polym. 2022;19:210.

 

  1. Mandl S, Thorwarth G, Stritzker B, Rauschenbach B. Two-dimensional texture and sheath evolution in metal plasma immersion ion implantation. Surf. Coat. Technol. 2005;200:589-593.

 

  1. Akhlaghipour N, Niknam A.R, Omaizi D. Particle in cell simulations of the pulsed plasma sheath: Dependence on pulse parameters. J. Electrostatics. 2022;117:103723-103733.

 

  1. Sun J, Sang C, Stirner T, Wang D. Characteristics of plasma immersion ion implantation with a nanosecond rise-time pulse: particle-in-cell simulations. Appl. Phys. 2010;43:275201-275228.

 

  1. Huang Y.X, Tian X.B, Yang S.Q, Fu K.Y, Chu P.K. Particle-in-cell numerical simulation of non-uniform plasma immersion ion implantation. Surf. Coat. Technol. 2007;201:5458-5462.

 

  1. Navab Safa N, Ghomi H, Niknam A.R. Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution. J. Plasma Phys. 2015;981-996.

 

  1. Novak S, Hrach R, Palack J, Hrachov V, Ibehej T. Study of dynamic processes in multi-component low-temperature plasmas. Vacuum. 2019;612:32149-32164.

 

  1. Khoram M, Ghomi H, Navab Safa N. Ion temperature and gas pressure effects on the magnetized sheath dynamics during plasma immersion ion implantation. J. Plasma Phys. 2016;23:033511-033520.

 

  1. Moreno J, Khodaee A, Okerstrom D, Bradley M.P. Lenaic Couedel, Time-resolved evolution of plasma parameters in a plasma immersion ion implantation source. J. Plasma Phys. 2021;28(12):123523-123538.

 

  1. Cisternas M, Bhuyan H, Retamal M.J, Casanova-Morales N, Favre M, Volkmann U.G, Saikia P, Diaz-Droguett D.E, Mandl S, Manova D, Moraga N, Chandia-Cristi A, Alvarez A, Guzman F. Study of nitrogen implantation in Ti surface using plasma immersion ion implantation & deposition technique as biocompatible substrate for artificial membranes. Mater. Sci. Eng. C. 2020;113:111002-111011.

 

  1. Luiz L.A, Kurelo B.C.E, Souza G.B, Andrade J, Bruno C.E. Effect of nitrogen plasma immersion ion implantation on the corrosion protection mechanisms of different stainless steels. Mater.Today. 2021;28:102655-102665.

 

  1. Harris F.E. Mathematics for Physical Science and Engineering: Symbolic Computing Applications in Maple and Mathematics. Academic Press. 2014.

 

  1. Uhm H.S, Lee W.M. High concentration of deuterium in palladium from plasma ion implantation. Phys. Fluids. B. 1991;3:3188.