نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران

2 گروه اتمی و مولکولی و نجوم، دانشکده فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، صندوق پستی: 1618-۱6315، تهران- ایران

چکیده

با اعمال دو باریکه پرشدت نسبیتی تحت شرایط مختلف بر پلاسمای کم چگال، تأثیر فاصله و زاویه نسبی باریکه­ها بر رشته‌ای شدن آن‌ها مورد بررسی قرار گرفت. نتایج حاصل از شبیه‌سازی‌ها با استفاده از کد ذره در سلول دو بعدی SMILEI نشان می‌دهند، زمانی که فاصله دو باریکه صفر است و زاویه نسبی بین آن‌ها وجود ندارد، نتایج منطبق با رفتار یک پالس قوی با شدت چهار برابر تک پالس است. هم‌چنین، تأثیر تغییرات پارامتر زاویه بر رشته‌ای شدن باریکه‌ها به مراتب مهم‌تر از تأثیر پارامتر فاصله است. با تغییر و افزایش فاصله دو باریکه در زاویه ثابت، تشکیل کانال‌های مجزایی مشاهده شده است که تفکیک آن‌ها با افزایش فاصله پالس بیشتر می‌شود. در بررسی اثر زاویه بر رشته‌ای شدن به ازای ، تشکیل دو کانال مجزا و پیش‌روی در پلاسما مشاهده شده است. به طوری‌که با افزایش زاویه به  کانال‌ها با هم ادغام شده و منجر به تشکیل یک تک کانال عریض چگالی می‌شود. بیشترین کانال‌های رشته‌ای مشاهده شده به ازای مقدار مشخصی از فاصله دوپالس، در زاویه نسبی میانی ، رخ می‌دهد. با توجه به اهمیت رشته‌ای شدن و به هم پیوستن کانال‌ها در ارتباط با موضوع پایداری انتشار پالس‌های پرتوان، این بررسی نشان می‌دهد که تغییرات زاویه نسبی بین دو باریکه و اثر آن در رشته‌ای شدن باریکه می‌تواند در زوایایی بر انتشار مؤثر و پایداری پالس پرتوان تأثیرات منفی داشته باشد که در برخی آزمایشات از جمله گداخت محصورسازی لیزری مطلوب نیست.

کلیدواژه‌ها

عنوان مقاله [English]

Particle simulation of laser beams filamentation in the interaction of two relativistic beams with under-dense plasma

نویسندگان [English]

  • S.A. Ghasemi 1
  • M. Lavasani 2
  • M. Pishdast 1
  • F. Rezaei 2
  • J. Yazdanpanah 1

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran – Iran

2 Atomic and Molecular and Astronomy Group, Physics Faculty, K.N. Toosi University of Technology, P.O.BOX: 16315-1618, Tehran - Iran

چکیده [English]

By applying two relativistic high-intensity laser beams under different conditions to low-density plasma, the effects of the beams' corresponding distance and angle on their filamentation were investigated and studied. The results of the simulations using the particle in cell (SMILEI) two-dimensional code show that when the distance and the corresponding angle between the pulses are zero, the results are the same as a powerful pulse with intensity equals four times a single pulse. Meanwhile, it was clear that the impact of relative beam angles on pulse filamentation is more significant and sensible than the effect of distance variation. So, it is shown that by increasing the distance, separate plasma channels are formed, and more filaments are observed. Moreover, the effect of relative beam angle variation reveals that, unexpectedly, two distinct channels formed and traveled through plasma. By increasing the angle to
θ = 2°, the channels merged and formed a single wide channel. Further, for a constant beams distance, the maximum filaments are observed at the middle angles θ = 4°, 6°. It should be noted that studying laser beam filamentation in plasma is so critical for stable pulse propagation through the plasma. Our simulations indicate that in some relative angles, we will not have stable and efficient pulse propagation. This could be distractive in some experiments such as inertial confinement fusion.

کلیدواژه‌ها [English]

  • Kinetic energy of electron
  • Laser-plasma interaction
  • Particle in cell code
  • Filamentation of laser beam
  • SMILEI
  1. Campbell P.T, Walsh C.A, Russell B.K, Chittenden J.P, Crilly A, Fiksel G, Gao L, Igumenshchev I.V, Nilson P.M, Thomas A.G.R, Krushelnick K, Willingale L. Measuring magnetic flux suppression in high-power laser–plasma interactions. Phys. Plasmas. 2022 January; 29(1): 012701. doi.org/10.1063/5.0062717.

 

  1. Wilson R, King M, Butler N.M.H, Carroll D.C, Frazer T.P, Duff M.J, Higginson A, Dance R.J, Jarrett J, Davidson Z.E, Armstrong C.D, Liu H, Hawkes S.J, Clarke R.J, Neely D, Gray R.J, McKenna P. Influence of spatial-intensity contrast in ultraintense laser-plasma interactions. Scientific Reports. 2022 Feb;12(1):1910. DOI: 10.1038/s41598-022-05655-4. PMID: 35115579; PMCID: PMC8814164.

 

  1. Huller S, Raj G, Rozmus W, Pesme D. Crossed beam energy transfer in the presence of laser speckle ponderomotive self-focusing and nonlinear sound waves. Phys. Plasmas. 2020;27:022703.

 

  1. Myatt J.F. Multiple-beam laser–plasma interactions in inertial confinement fusion. Physics of Plasmas. 2014;21:055501.

 

  1. Debus A, Pausch R, Huebl A, Steiniger K, Widera R, Cowan T.E, Schramm U, Bussmann M. Circumventing the Dephasing and Depletion Limits of Laser-Wakefield Acceleration. Physical Review. 2019; X 9:031044.

 

  1. Ferri J, Siminos E, Fülöp T. Enhanced target normal sheath acceleration using colliding laser pulses. Communications Physics. 2019;2:40.

 

  1. Yang L, Deng Z, Zhou C.T, Yu M.Y, Wang X. High-charge energetic electron bunch generated by intersecting laser pulses. Phys. Plasmas. 2013;20:033102.

 

  1. Deng Z.G, Zhang Z.M, Zhang B, He S.K, Teng J, Hong W, Dong K.G, Wu Y.C, Zhu B, Gu Y.Q. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma. Physical Review E. 2017;95:023206.

 

  1. Zhang P, Saleh N, Chen S, Sheng Z.M, Umstadter D. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses. Phys. Rev. Lett. 2003;91:225001.

 

  1. Gizzi L.A, Boella E, Labate L, Baffigi F, Bilbao P.J, Brandi F, Cristoforetti G, Fazzi A, Fulgentini L, Giove D, Koester P, Palla D, Tomassini P. Enhanced laser‑driven proton acceleration via improved fast electron heating in a controlled pre‑plasma. Scientific Reports. 2021;11:13728.

 

  1. Labaune C, Baldis H.A, Cohen B, Rozmus W. Nonlinear modification of laser–plasma interaction processes under crossed laser Beams. Physics of Plasmas. (1994-present). 1999;6:2048.

 

  1. Sheng Z.-M, Zhang J, Umstadter D. Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Applied Physics B. 2003;77:673–680.

 

  1. Yazdanpanah J. Self-modulation and scattering instability of a relativistic short laser pulse in an underdense plasma. Plasma Phys. Control. Fusion. 2019;61:085021.

 

  1. Albert F, Ccouprie M.E, Debus A, Downer M.C, Faure J, Flacco A, Gizzi L.A, Grismayer T, Huebl, A, Joshi C, Labat M, Leemans W.P, Maier A.R, Mangles S.P.D, Mason P, Mmathieu F, Muggli P, Nishiuchi M, Osterhoff J, … Zeil K. 2020 roadmap on plasma accelerators. New Journal of Physics. 2021;23(3).

 

  1. Pukhov A, Sheng Z.M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels. Phys. Plasmas. 1999;6:2847.

 

  1. Yang L, Deng Z.G, Zhou C.T, Yu M.Y, Wang X.G. High-charge energetic electron bunch generated by intersecting laser pulses. Phys. Plasmas. 2013;20:033102. DOI: 10.1063/1.4794352.

 

  1. Wallin E, Gonoskov A, Marklund M. Radiation emission from braided electrons in interacting wakefields. Phys. Plasmas. 2017;24:093101. Doi: 10.1063/1.4997440.

 

  1. Huang T.W, Zhou C.T. Electron acceleration induced by interaction of two relativistic laser pulses in underdense plasmas. Physical Review E. 2018;98:053207.

 

  1. Epperlein E.M. Kinetic theory of laser fomentation in plasmas. Physical Review Letters. 1990;65.

 

  1. Kaw P.K, Schmidt G, Wilcox T. Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids. 1973;16:1522. Doi: 10.1063/1. 1694552.

 

  1. Estabrook K, Kruer W.L, Bailey D.S. Two‐dimensional ray‐trace calculations of thermal whole beam self‐focusing. Phys. Fluids. 1985;28:19. Doi: 10.1063/1.865180.

 

  1. Cohen B.I, Max C.E. Stimulated scattering of light by ion modes in a homogeneous plasma: Space‐time evolution. Phys. Fluids. 1979;22:1115. Doi: 10.1063/ 1.862713.

 

  1. Tripathi V.K, Pitale L.A. Filamentation of a laser beam in a collisional plasma. J. Appl. Phys. 1977;48:3288. Doi: 10.1063/1.324209.

 

  1. Berger R.L, Lasinski B.F, Kaiser T.B, Williams E.A, Langdon A.B, Cohen B.I. Theory and three-dimensional simulation of light filamentation in laser-produced plasma. Physics of Fluids B: Plasma Physics. (1989-1993). 1993;5:2243. doi: 10.1063/1.860758.

 

  1. Young P.E. Experimental observation of filamentation growth in laser‐produced plasmas. Physics of Plasmas. 1995;2:2815. doi: 10.1063/1. 871179.

 

  1. Labaune C, Baton S, Jalinaud T, Baldis H.A, Pesme D. Filamentation in long scale length plasmas: experimental evidence and effects of laser spatial incoherence. Physics of Fluids B: Plasma Physics. (1989-1993). 1992;4:2224. doi:10.1063/1.860027.

 

  1. Kruer W.L. Ponderomotive and thermal filamentation of laser light. Comments Plasma Phys. Controlled Fusion. 1985;9:63.

 

  1. Kruer W.L. The physics of laser plasma interactions. Addisonwesley. New York. 1988.

 

  1. Giacone R.E, McKinstrie C.J, Betti R. Angular dependence of stimulated Brillouin scattering in homogeneous plasma. Phys. Plasmas 1 December. 1995. Doi: https://doi.org/10.1063/1.871464.

 

  1. Andrew J. Schmitt. Three‐dimensional filamentation of light in laser plasmas. Phys. Fluids B 1 January 1991. Doi: 10.1063/1.859936.

 

  1. Sodha M.S, Ghatak A.K, Tripathi V.K. In progress in optics. Edited by e. Wolf (north holland. Amsterdam, 1976), 13:170. V.K. Tripathi, Pitale L.A. 1. Appl. Phys. 1977;48:3288.

 

  1. Kent Estabrook, Kruer W.L, Bailey D.S. Two‐dimensional ray‐trace calculations of thermal whole beam self‐focusing. Phys. Fluids 1 January. 1985;28:1. Doi: 10.1063/1.865180.

 

  1. Babati L.J, Farmer W.A, Berger R.L, Belyaev M.A, Chapman T, Hinkel D.E, Kur E, Williams E.A. Simulating the filamentation of smoothed laser beams with three-dimensional nonlinear dynamics. AIP Advances. 2022;12:095005. Doi: 10.1063/5. 0090057.

 

  1. Singh M, Mahmoud S.T, Sharma R.P. Generation of THz Radiation from Laser Beam Filamentation in a Magnetized Plasma. Plasma Phys. 2012;52(4):243- 250. DOI: 10.1002/ctpp.201100058.

 

  1. Wei M.S, Beg F.N, Clark E.L, Dangor A.E, Evans R.G, Gopal A, Ledingham K.W.D, McKenna P, Norreys P.A, Tatarakis M, Zepf M, Krushelnick K. Observations of the filamentation of high-intensity laser-produced electron beams. Physical Review E. 2004;70:056412. DOI: 10.1103/PhysRevE.70. 056412.

 

  1. Ghasemi S.A, Pishdast M, Yazdanpanah J. Study on the electron acceleration in the interaction of two relativistic laser beams with under-dense plasma. Journal of Nuclear Science and Technology. 2022;99(2).