نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده فوتونیک و فناوری‌های کوانتومی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 836-14395، تهران- ایران

چکیده

در این مقاله به منظور دست‌یابی به چشمه نور سفید تولید ابرپیوستار توسط پدیده نواری شدن تپ‌های تقویت شده فمتوثانیه لیزر تیتانیم سفایر در آب بدون یون به‌طور تجربی بررسی شده است. در طی انتشار تپ‌های فمتوثانیه در داخل آب پدیده غیرخطی خودکانونگی منجر به نواری شدن و تولید ابرپیوستار می‌گردد. اثر تغییر فاصله نقطه کانون از دیواره سلول حاوی آب و همچنین اثر تغییر انرژی تپ فمتوثانیه فرودی مطالعه شده است. در توان‌های نزدیک توان بحرانی حلقه‌ها و گسیل مخروطی بخش قابل توجهی از پیوستار خروجی را تشکیل می‌دهند و در توان‌های بسیار بالا بخش نور سفید مرکزی کل خروجی را در برمی‌گیرد. ابرپیوستاری با پهنای 600 نانومتر توسط تپ‌های لیزری فمتوثانیه با انرژی 1/19 میلی‌ژول تولید شده است. پهن‌شدگی بیناب پیوستار تولید شده به‌واسطه دو اثر خودکانونگی کر و واکانونی پلاسما برای تپ‌های با پهنای زمانی 37 فمتوثانیه در بازه 420 تا 3800 برابر توان بحرانی آب بررسی شده است. با افزایش انرژی تپ ورودی تا 460 میکروژول که توان متوسط آن 2900 برابر توان بحرانی است، پهنای بیناب ابرپیوستار به‌صورت نامتقارن افزایش یافته و لبه آبی بیناب تا طول‌موج 400 نانومتر جابه‌جا می‌شود. با افزایش بیشتر انرژی به دلیل گیرافتادگی شدت درون نوار جابه‌جایی بیشتری مشاهده نشده است.

کلیدواژه‌ها

عنوان مقاله [English]

Supercontinuum generation by femtosecond laser filamentation in deionized water

نویسندگان [English]

  • F. Hajiesmaeilbaigi
  • E.S. Bostandoost
  • A.S. Motamedi
  • H. Razzaghi

Photonic and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14395-836, Tehran - Iran

چکیده [English]

The experimental investigation of supercontinuum generation in deionized water using an amplified Ti:sapphire femtosecond laser pulses is presented. During the propagation of femtosecond pulses in deionized water, self-focusing leads to filamentation and subsequent supercontinuum generation. The effects of varying the focal point distance from the cell and altering the incident femtosecond laser pulse energy on the supercontinuum spectra were studied. Near critical power, ring and cone emissions contribute significantly to the continuum. The central white light part covers the output signal at very high laser powers. A supercontinuum emission with a bandwidth of 600 nm was achieved using a laser pulse energy of 1.19 mJ. The spectrum broadening, due to Kerr self-focusing and plasma defocusing, was analyzed for 37 femtosecond laser pulses with average powers ranging from 420 to 3800 times the critical power. Increasing the input pulse energy to 460 µJ, corresponding to 2900 times the critical power, resulted in an asymmetric broadening of the spectrum, with the blue edge shifting to 400 nm. Further increases in energy showed no additional shift due to intensity clamping.

کلیدواژه‌ها [English]

  • Supercontinuum
  • Filamentation
  • Femtosecond laser
  • Kerr self-focusing
  • Plasma defocusing
  1. He B, Nan J, Liu F, Yuan S, Li M, Peng J, Zeng H. Terahertz Generation Enhanced by Nonlinear Filaments Interaction in Liquids. IEEE Photonics Technology Letters. 2019;31:15.

 

  1. Hatanaka K, Tightly-focused femtosecond laser interaction with water. Proc. SPIE 11201, SPIE Micro + Nano Materials, Devices and Applications 112010U. 2019.

 

  1. Guo B, Sun J, Lu Y.F, Jiang L. Ultrafast dynamics observation during femtosecond laser-material interaction. Int. J. Extrem. Manuf. 2019;1:032004.

 

  1. Miloshevsky G. Ultrafast laser matter interactions: modeling approaches, challenges, and prospects. Modelling Simul. Mater. Sci. Eng. 2022;30:083001.

 

  1. Qi P, Qian W, Guo L, Xue J, Zhang N, Wang Y, Zhang Z, Zhang Z, Lin L, Sun C, Zhu L, Liu W. Sensing with Femtosecond Laser Filamentation. Sensors. 2022;22:7076.

 

  1. Chin S.L, Hosseini S.A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V.P, Kosareva O.G, Schroeder H. The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges. Can. J. Phys. 2005;83:863–905.

 

  1. Vasa P, Dharmadhikari J.A, Dharmadhikari A.K, Sharma R, Singh M, Mathur D. Supercontinuum Generation in Water by Intense, Femtosecond Laser Pulse under Anomalous Chromatic dispersion. Phys. Rev.A. 2014;89:043834.

 

  1. La Fontaine B, Vidal F, Jiang Z, Chien C.Y, Comtois D, Desparois A, Johnston T.W, Kieffer J.-C, Pépin H, Mercure H.P. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Phys. Plasmas. 1999;6:1615–1621.

 

  1. Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses. Appl. Phys. B. 1999;68:753–756.

 

  1. Tzortzakis S, Prade B, Franco M, Mysyrowicz A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Comm. 2000;181:123–127.

 

  1. Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 2005;30:320–322.

 

  1. Mao X, Mao S.S, Russo R.E. Imaging femtosecond laser-induced electronic excitation in glass. Appl. Phys. Lett. 2003;82:697–699.

 

  1. Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys. Rep. 2007;441:47–189.

 

  1. Dubietis A, Couairon A, Kučinskas E, Tamošauskas G, Gaižauskas E, Faccio D, Di Trapani P. Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water. Apl. Phys. B. 2006;84(3);439–446.

 

  1. Reich S, Schäffer S, Lueck M, Wickert M, Osterholz J. Continuous wave high-power laser propagation in water is affected by strong thermal lensing and thermal blooming already at short distances. Sci. Rep. 2021;11(1):1–10.

 

  1. Dubietis A, Couairon A. Ultrafast Supercontinuum Generation in Transparent Solid-State Media. Springer Verlag. 2019.

 

  1. Liu F. Laser filamentation induced bubbles and their motion in water. Opt. Express. 2016;24(12);13258.

 

  1. Kedenburg S. Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response. Appl. Phys. B. 2014;117:803–816.

 

  1. Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near infrared region to the ultraviolet region. Appl. Opt. 2007;46(18):3811–3820.

 

  1. Williams F, Varma S.P, Hillenius S. Liquid water as a lone-pair amorphous semiconductor. J. Chem. Phys. 1976;64:1549–1554.

 

  1. Grand D, Bernas A, Amouyal E. Photoionization of aqueous indole: Conduction band edge and energy gap in liquid water. Chem. Phys. 1979;44:73–79.

 

  1. Liu W, Kosareva O, Golubtsov I.S, Iwasaki A, Becker A, Kandidov V.P, Chin S.L. Femtosecond laser pulse filamentation versus optical breakdown in H2O. Appl. Phys. B. 2006;76:215.

 

  1. Wang L, Fan Y.X, Yan Z.D, Wang H.T, Wang Z.L. Flat-plateau supercontinuum generation in liquid absorptive medium by femtosecond filamentation. Opt. Lett. 2010;35:2925-2927.

 

  1. Potemkin F.V, Mareev E.I, Podshivalov A.A, Gordienko V.M. Highly extended high-density filaments in tight focusing geometry in water: from femtoseconds to microseconds. New J. Phys. 2015;17:053010.

 

  1. Dharmadhikari J.A, Steinmeyer G, Gopakumar G, Mathur D, Dharmadhikari A.K, Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Opt. Lett. 2016;41:3475–3478.

 

  1. Nie Y, Yuan S, Du Y, Yan M, Wang J, Zhang Q, Xu H, Li M, Zeng H. Colorful light channel for femtosecond laser filamentation in nanoparticle colloidal solutions. AIP Advances. 2020;10:065010.

 

  1. Panagiotopoulos P, Papazoglou D.G, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications. 2013;4:2622.

 

  1. Dasa M.K, Nteroli G, Bowen P, Messa G, Feng Y, Petersen C.R, Koutsikou S, Bondu M, Moselund P.M, Podoleanu A, Bradu A, Markos Ch, Bang O. All-fiber supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. Photoacoustics. 2020;18(100163):1–7.

 

  1. Marble C.B, Yakovlev V.V, Wharmby A.W. Simulated supercontinum generation in water and the human eye. Proceeding of SPIE, Materials and Device XVIII. 2019;10902.

 

  1. Le H.V. Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fibers infiltrated with carbon tetrachloride covering 930–2500 nm. Opt. Express. 2021a;29(24):39586–39600.

 

  1. Van B.C, Hai T.T, Thao N.T, Dinh Q.H, Nguyen D.T, Van Le H. Experimental study of supercontinuum generation in water-filled-cladding photonic crystal fiber in visible and near-infrared region. Opt Quant Electron. 2023;55:229.

 

  1. Keller K.R, Rojas-Aedo R, Vanderhaegen A, Ludwig M, Brida D. High stability white light generation in water at multi-kilohertz repetition rates. Optics Express. 2023;31(23):38400-38408.

 

  1. Liu W.W. Intensity Clamping during Femtosecond Laser Filamentation. Chinese Journal of Physics. 2014;52:465.

 

  1. Liu W, Petit S, Becker A, Aközbek N, Bowden C.M, Chin S.L. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 2002;202:189.

 

  1. Braun A, Korn G, Liu X, Du D, Squier J, Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995;20:73.

 

  1. Kennedy P.K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory, IEEE Journal of Quantum Electronics. 1995;31:12.

 

  1. Chin S.L. Some Fundamental Concepts of Femtosecond Laser Filamentation. Chapter in Springer Series in Chemical Physics. 2008 January.

 

  1. Hajiesmaeilbaigi F, Azima A. Ultrashort pulse generation by self-mode-locked Ti:sapphire laser without apertures and with low pumping powers. Canadian Journal of Physics. 1998;76(6):495-499.

 

  1. Hajiesmaeilbaigi F, Bostandoost E.S, Motamedi A.S, Razaghi H. Amplification of Ti:sapphire femtosecond laser pulses by Z- scheme Regenerative Amplifier. Journal of Nuclear Science and Technology. 2023;44(2):144-150 [In Persian].