نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران

چکیده

وجود پیش‌پالس لیزری با شدت‌های کم (کمتر از 1013Wcm-2 با پهنای زمانی نانوثانیه و شدت‌های کمتر از 1017Wcm-2 با پهنای زمانی پیکوثانیه) یک مسئله اساسی در آزمایش‌های شتاب‌دهی لیزری پروتون می‌باشد، که اغلب پارامترهای باریکه پروتون تولید شده توسط لیزرهای با شدت بالا را تغییر می‌دهد. با توجه به اندازه دامنه شدت پیش‌پالس و ضخامت هدف، اثرات متعددی ممکن است اتفاق بیفتد. در این کار به منظور نزدیک شدن به نتایج واقعی به طور خاص برای پارامترهای پیش‌پالس مجموعه لیزری ATLAS؛ شامل یک پیش‌پالس 20 پیکوثانیه‌ای، و برای ضخامت‌های مختلف هدف (از 0/12 -1 میکرومتر) شبیه‌سازی‌های هیدرودینامیکی با کد سیالی انجام و پارامترهای هدف در انتهای زمان اعمال پیش‌پالس از کد سیالی استخراج شده است. بر اساس نتایج به دست آمده برای این شرایط معین از پیش‌پالس، ضخامت 0/25 میکرومتر برای برهم‌کنش پالس اصلی با هدف بهینه می‌باشد. در ضخامت‌های کوچک‌تر، نمایه چگالی در سطح پشتی هدف به هم می‌خورد و این موجب کاهش بازدهی شتاب‌دهی خواهد شد.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of laser prepulse on the target parameters in TNSA experiments

نویسندگان [English]

  • S. Rezaei
  • M.J. Jafari

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran – Iran

چکیده [English]

Low-intensity laser prepulse (<10^13 W cm^−2, nanosecond duration and <10^17 W cm^−2, picosecond duration) significantly impact experiments on laser-induced proton generation, often constraining the performance of proton sources from high-intensity lasers. Depending on the intensity regime and target thickness, various effects can result from the prepulse. This study focuses on hydrodynamic simulations using a fluid code to replicate real-world conditions, specifically targeting the prepulse parameters of the ATLAS laser facility (including a 20-picosecond duration) across different target thicknesses (1-0.12 μm). The simulations extract target parameters at the end of the prepulse phase. For these specific prepulse conditions, the results indicate that a target thickness of 0.25 μm optimizes the interaction with the main laser pulse. Thinner targets exhibit altered density profiles on the rear surface, thereby reducing acceleration efficiency.

کلیدواژه‌ها [English]

  • Hydrodynamic simulation
  • Laser prepulse
  • Target rear surface
  1. Strickland D, Mourou G. Compression of amplified chirped optical pulses. Optics Communications. 1985;55(6):447-449.

 

  1. Edwards C. Vulcan Petawatt Upgrade Overview. CLF/RAL Annual Report, URL: http://www.clf.rl.ac. uk/Reports/2001-2002/pdf/75.pdf. 2002.

 

  1. Kitagawa Y, Fujita H, Kodama R, Yoshida H, Matsuo S, Jitsuno T, Kawasaki T, Kitamura H, Kanabe T, Sakabem S, Shigemori K, Miyanaga N, Izawa Y. Prepulse-free petawatt laser for a fast ignitor. IEEE Journal of Quantum Electronics. 2004;40(3):281-293.

 

  1. Malka V, Fritzler S, Lefebvre E, Aleonard M.M, Burgy F, Chambaret J.P, Chemin J.F, Krushelnick K, Malka G, Mangles S.P.D, Najmudin Z, Pittman M, Rousseau J.-P, Scheurer J.-N, Walton B, Dangor A.E. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science. 2002;298(5598):1596-1600.

 

  1. Esarey E, Sprangle P, Krall J, Ting A. Overview of plasma-based accelerator concepts. IEEE Transactions on Plasma Science. 1996;24(2):252-288.

 

  1. Gahn C, Pretzler G, Saemann A, Tsakiris G.D, Witte K.J, Gassmann D, Schätz T, Schramm U, Thirolf P, Habs D. MeV γ-ray yield from solid targets irradiated with fs-laser pulses. Applied Physics Letters. 1998;73(25):3662-3664.

 

  1. Maksimchuk A, Gu S, Flippo K, Umstadter D, VY Bychenkov V.Y. Forward ion acceleration in thin films driven by a high-intensity laser. Physical Review Letters. 2000;84(18):4108.

 

  1. Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J.C, Geissel M, Audebert P, Cowan T, Roth M. MeV ion jets from short-pulse-laser interaction with thin foils. Physical Review Letters. 2002;89(8):085002.

 

  1. Gitomer S.J, Jones R.D, Begay F, Ehler A.W, Kephart J.F, Kristal R. Fast ions and hot electrons in the laser–plasma interaction. The Physics of Fluids. 1986;29(8):2679-2688.

 

  1. Perry M.D, Pennington D, Stuart B.C, Tietbohl G, Britten J.A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H.T, Vergino M, Yanovsky V. Petawatt Laser Pulses. Optics Letters. 1999;24(3):160-162.

 

  1. Snavely R.A, Key M.H, Hatchett S.P, Cowan T.E, Roth M, Phillips T.W, Stoyer M.A, Henry E.A, Sangster T.C, Singh M.S, Wilks S.C, MacKinnon A, Offenberger A, Pennington D.M, Yasuike K, Langdon A.B, Lasinski B.F, Johnson J, Perry M.D, Campbell E.M. Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters. 2000;85(14):2945.

 

  1. Roth M, Allen M, Audebert P, Blazevic A, Brambrink E, Cowan T.E, Fuchs J, Gauthier J.C, Geißel M, Hegelich M, Karsch S, Meyer-Ter-Vehn J, Ruhl H, Schlegel T, Stephens R.B. The generation of high-quality, intense ion beams by ultra-intense lasers. Plasma Physics and Controlled Fusion. 2002;44(12B):B99.

 

  1. Bartal T, Foord M.E, Bellei C, Key M.H, Flippo K.A, Gaillard S.A, Offermann D.T, Patel P.K, Jarrott L.C, Higginson D.P, Roth M, Otten A, Kraus D, Stephens R.B, McLean H.S, Giraldez E.M, Wei M.S, Gautier D.C, Beg F.N. Focusing of short-pulse high-intensity laser-accelerated proton beams. Nature Physics. 2012;8(2):139.

 

  1. Neely D, Foster P, Robinson A, Lindau F, Lundh O, Persson A, Wahlström C.-G, McKenna P. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters. 2006;89(2):021502.

 

  1. Margarone D, Klimo O, Kim I.J, Prokůpek J, Limpouch J, Jeong T.M, Mocek T, Pšikal J, Kim H.T, Proška J, Nam K.H, Štolcová L, Choi I.W, Lee S.K, Sung J.H, Yu T.J, Korn G. Laser-driven proton acceleration enhancement by nanostructured foils. Physical Review Letters. 2012;109(23):234801.

 

  1. Dollar F, Zulick C, Matsuoka T, McGuffey C, Bulanov S.S, Chvykov V, Davis J, Kalinchenko G, Petrov G.M, Willingale L, Yanovsky V, Maksimchuk A, Thomas A.G.R, Krushelnick K. High contrast ion acceleration at intensities exceeding 1021 W cm−2. Physics of Plasmas. 2013;20(5):056703.

 

  1. Roth M, Blazevic A, Geissel M, Schlegel T, Cowan T.E, Allen M, Gauthier J.-C, Audebert P, Fuchs J, Meyer-Ter-Vehn J, Hegelich M, Karsch S, Pukhov A. Energetic ions generated by laser pulses: A detailed study on target properties. Physical Review Special Topics-Accelerators and Beams. 2002;5(6):061301.

 

  1. Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Physical Review Letters. 2001;86(16):3562.

 

  1. Nakamura T, Tampo M, Kodama R, Bulanov S.V, Kando M. Interaction of high contrast laser pulse with foam-attached target. Physics of Plasmas. 2010;17(11):113107.

 

  1. Sgattoni A, Londrillo P, Macchi A, Passoni M. Laser ion acceleration using a solid target coupled with a low-density layer. Physical Review E. 2012;85(3):036405.

 

  1. Passoni M, Zani A, Sgattoni A, Dellasega D, Macchi A, Prencipe I, Floquet V, Martin P, Liseykina T.V, Ceccotti T. Energetic ions at moderate laser intensities using foam-based multi-layered targets. Plasma Physics and Controlled Fusion. 2014;56(4):045001.

 

  1. Sunahara A, Asahina T, Nagatomo H, Hanayama R, Mima K, Tanaka H, Kato Y, Nakai S. Efficient laser acceleration of deuteron ions through optimization of pre-plasma formation for neutron source development. Plasma Physics and Controlled Fusion. 2018;61(2):025002.

 

  1. Costa G, Torrisi L. Dependence of high-energy proton acceleration in TNSA regime by fs laser on the laser pulse shape. Journal of Instrumentation. 2020;15(06):C06030.

 

  1. Hadjikyriacou A, Psikal J, Giuffrida L, Kucharik M. Novel approach to TNSA enhancement using multi-layered targets–a numerical study. Plasma Physics and Controlled Fusion. 2023.

 

  1. Varmazyar P, Mirzanejhad S, Mohsenpour T. Effect of pre-plasma on the ion acceleration by intense ultra-short laser pulses. Laser and Particle Beams. 2018;36(2):226-231.

 

  1. Keppler S, Elkina N, Becker G.A, Hein J, Hornung M, Mäusezahl M, Rödel C, Tamer I, Zepf M, Kaluza M.C, Intensity scaling limitations of laser-driven proton acceleration in the TNSA-regime. Physical Review Research. 2022;4(1):013065.

 

  1. Kaluza M.C. Characterisation of laser-accelerated proton beams. Technische Universität München. 2004.

 

  1. Mora P. Plasma expansion into a vacuum. Physical Review Letters. 2003;90(18):185002.

 

  1. Mora P. Thin-foil expansion into a vacuum. Physical Review E. 2005;72(5):056401.

 

  1. Batani D, Jafer R, Veltcheva M, Dezulian R, Lundh O, Lindau F, Persson A, Osvay K, Wahlström C-G, Carroll D.C, McKenna P, Flacco A, Malka V. Effects of laser prepulses on laser-induced proton generation. New Journal of Physics. 2010;12(4):045018.

 

  1. Kaluza M, Schreiber J, Santala M.I.K, Tsakiris G.D, Eidmann K, Meyer-Ter-Vehn J, Witte K.J. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Physical Review Letters. 2004;93(4):045003.

 

  1. Flacco A, Sylla F, Veltcheva M, Carrié M, Nuter R, Lefebvre E, Batani D, Malka V. Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Physical Review E. 2010;81(3):036405.

 

  1. Gizzi L.A, Boella E, Labate L, Baffigi F, Bilbao P.J, Brandi F, Cristoforetti G, Fazzi A, Fulgentini L, Giove D, Koester P, Palla D, Tomassini P. Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma. Scientific Reports. 2021;11(1):13728.

 

  1. Wang D, Shou Y, Wang P, Liu J, Li C, Gong Z, Hu R, Ma W, Yan X. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE. Scientific Reports. 2018;8(1):2536.

 

  1. Kiefer D. Relativistic Electron Mirrors: from High Intensity Laser–Nanofoil Interactions. Springer 2014.

 

  1. Eidmann K, Meyer-Ter-Vehn J, Schlegel T, Hüller S. Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Physical Review E. 2000;62(1):1202.

 

  1. Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Computer Physics Communications. 1988;49(3):475-505.