نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه فیزیک، دانشکده علوم پایه، دانشگاه بینالمللی امام خمینی (ره)، صندوق پستی: 96818-34148، قزوین- ایران
2 پژوهشکده رآکتور و ایمنی هستهای، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران - ایران
چکیده
شناسایی اثرات تابش نوترون بر آلومینیمهایی که در ساخت غلافهای سوخت رآکتورها بهکار میروند از اهمیت بسیار زیادی برخوردار است. با توجه به مشکلات موجود در تابشدهی با نوترون در برخی از مواقع از روش تابشدهی با یونها (معمولاً پروتون) برای این بررسی استفاده میشود. تغییرات در حفرهها در تابش پروتونهای پرانرژی در حد پیکومتر است. در این تحقیق از طیفنگاری طولعمر نابودی پوزیترون که قابلیتی برای بررسی ابعاد حفرهها را در حد پیکومتر و نانومتر است استفاده شده تا تغییرات آلومینیمهای Al-6061 و Al-303 بر اثر تابش پروتونهای MeV 2/2 در مقادیر مختلف تابش بررسی شود. نتایج نشان میدهد که مقدار زمان τave برای هر دو نمونه آلومینیم بررسی شده ابتدا کاهش پیدا کرده و سپس افزایش یافته است که نشاندهنده کوچکتر شدن حفرهها در مراحل اولیه تابش و در نتیجه کمشدن عیوب تهیجا و بزرگ شدن آنها در ادامه تابش که بیانگر زیاد شدن عیوب بیننشین است میباشد. این نتایج توسط آزمون XRD نیز تأیید شده است. در این آزمون نیز مشاهده میشود اندازه کریستال در آلومینیمهای تابشدیده در ابتدا شروع به افزایش و سپس شروع به کاهش کرده است.
کلیدواژهها
عنوان مقاله [English]
Investigation the fuel clad radiation damage by positron annihilation lifetime spectroscopy
نویسندگان [English]
- R. Jafari 1
- M.A. Amirkhani Dehkordi 2
- E. Yahaghi 1
- B. Rokrok 2
- M. Asadi Asad Abad 2
1 Department of Physics, Faculty of Basic Sciences, Imam Khomeini International University, P.O.BOX: 34148-96818, Qazvin - Iran
2 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran - Iran
چکیده [English]
Identification of the changes of aluminum structure due to neutron radiation is very important in the reactor fuel clad. In some cases, ion (usually proton beam) irradiation method is implemented for this investigation. The changes in the holes of Al are in the range of picometers by the radiation of energetic protons. In this research, positron annihilation lifetime spectroscopy, was used to investigate the changes of holes in Al-6061 and Al-303 due to the radiation of 2.2 MeV protons at different amounts of radiation. This method has the ability to evaluate the dimensions of the holes in the range of picometers and nanometers. For both investigated aluminum samples, the results show that the value of τave first decreased and then increased. It indicates the holes became smaller and decrease the vacancy defects in the initial stages of irradiation. Then, the holes became larger in the continuation of irradiation, which indicates increasingin the interstitial defects. These results were also confirmed by XRD test. It can be seen that the crystal size of the irradiated aluminum increased at the in the initial stages of irradiation and then decreased in the continuation of irradiation.
کلیدواژهها [English]
- Radiation damage
- Fuel clad aluminum
- Positron radiation
- Positron annihilation lifetime spectroscopy
- Tsay K.V, Rofman O.V, Kudryashov V.V, Yarovchuk A.V, Maksimkin O.P. Influence of neutron irradiation and ageing on behavior of SAV-1 reactor alloy. Nuclear Engineering and Technology. https://doi.org/10.1016/j.net.2021.04.025.
- Kanjana K, Ampornrat P, Channuie J. Gamma-radiation-induced corrosion of aluminum alloy: Low dose effect. In Journal of Physics. Conference Series. IOP Publishing. 2017;860(1):012041.
- Kumar P.V, Reddy G.M, Rao K.S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds–Effect of post weld heat treatment. Defence Technology. 2015;11(4):362-369.
- https://asm.matweb.com/search/SpecificMaterial.asp? bassnum=ma7075t6.
- Alloy 7075, Understanding Cold Finished Aluminum Alloys. Alcoa Global Cold Finished Products.
- Al-Jaafari M. Mechanical Properties of 7075 Aluminum Alloy Matrix/Al2O3 Particles Reinforced Composites. Engineering and Technology Journal. 2017;35:239-245.
- Zhou B, Liu B, Zhang S, Lin R, Jiang Y, Lan X. Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties. Journal of Alloys and Compounds. 2021;879:160407.
- Geoffrey Matthew Geise, Positron Annihilation Lifetime Spectroscopy (PALS). In book: Encyclopedia of Membranes. DOI:10.1007/978-3-642-40872-4_1150-2.
- Bosnar S, Vrankić M, Bosnar D, Ren N, Šarić A. Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites. Author links open overlay. J. Phys. D: Appl. Phys. 2009;42:243001 (21pp).
- Esmizade E, Razavi Nouri M, Kalati Vahid A. Positron Annihilation Life-time Spectroscopy (PALS) I. Introduction and Applications in Polymer Science. Polymer. 2012;4-12: 10.22063/BASPARESH.2012.930 [In Persian].
- Jean Y.C, Mallon P.E, Shrader D.M. Principles and Applications of Positron and Positronium Chemistry. World Scientific Publishing Co. Pte. Ltd., ISBN 981-238-144-9. 2003.
- Asgarian S.M, Kargar Z. Positron annihilation lifetime spectroscopy in nickel ferrite and iron oxide nanopowders. Iranian Journal of Physics Reasearch. 2019;19(2).
- Zaleski R, Zaleski K, Gorgol M, Wierte M. Positron annihilation study of aluminum, titanium, and iron alloys surface after shot peening. Appl. Phys. A. 2015;120:551–559. DOI: 10.1007/s00339-015-9214-0.
- Elsayed M, Staab T.E.M, ˇzek J.C, Krause-Rehberg R. Monovacancy-hydrogen interaction in pure aluminum: Experimental and ab-initio theoretical positron annihilation study. Acta Materialia. 2023;248:118770. https://doi.org/10.1016/j.actamat. 2023.118770.
- Hamiltona C, Dymekb S, Dryzekc E, Kopyściańskib M, Pietrasd A, Węglowskad A, Wróbel M. Application of positron lifetime annihilation spectroscopy for characterization of friction stir welded dissimilar aluminum alloys. Materials Characterization. 2017;132:431–436. http://dx.doi.org/10.1016/j.matchar.2017.09.017.
- Was G.S. Fundamentals of Radiation Materials Science Metals and Alloys. 2007 Springer.
- Amirkhani M.A, Khoshahval F. Evaluation of the radiation damage effect on mechanical properties in Tehran research reactor (TRR) clad. Nuclear Engineering and Technology. 2020;52(12):2975-2981.
- Analyses Supporting Conversion of Research Reactors from High Enriched Uranium Fuel to Low Enriched Uranium Fuel. 2018.
- Institute N. Final safety analyses report for Tehran research reactor. ed: Atomic Energy Organization of Iran Tehran. 2009.
- Triftshäuser W. Positron trapping in solid and liquid metals. Physical Review B. 1975;12(11):4634.
- Berger A, Ockers S, Chason M, Siegel R. A study of vacancy-iron interactions in quenched aluminum. Journal of Nuclear Materials. 1978;69(1-2):734-737.
- Amirkhani M.A, Asadi M, Adeli R, Bagherzadeh M, Kakoie O. Experimental investigation and simulation of radiation damage to the fuel clad of Tehran and Isfahan research reactors. PRI-R3-99-002. 2023 [In Persian].
- https://www.steel-grades.com/metals/85/191860-AL303.html.
- Specification for Aluminum and Aluminum-Alloy Sheet and Plate (metric) (Report). B07 Committee. Doi:10.1520/b0209m-14.
- Davis J.R. Aluminum and aluminum alloys. ASM international. 1993.
- Silva M.S, Barbosa C, Acselrad O, Pereira L.C. Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy. Journal of Materials Engineering and Performance. 2004;13:129-134.
- Murty K.L, Charit I. An introduction to nuclear materials: fundamentals and applications. John Wiley & Sons. 2013.
- Biswas R.K, Ghosh J, Nannarone S, Koshmak K, Nambissan P.M.G, Ahmed M, Mukherjee Sh, Datta A, Kuttanellore M. Insight into the spontaneous breakdown of ‘Toughened glass’: From nano- to macroscale. Materialia. 2020;12:100776. https://doi.org/10.1016/j.mtla.2020.100776.
- Brusa R.S, Deng W, Karwasz G.P, Zecca A. Doppler-broadening measurements of positronannihilation with high-momentum electrons in pure elements. Nuclear Instruments and Methods, Physics Research B. 2002;194:519–531.
- Weisberg H, Berko S. Positron lifetime in metal. Physics Review. 1967;154(2):249-257.