نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ‌شبیه‌سازی چندمقیاسی- چند فیزیکی و آنالیز محاسباتی، مؤسسه تحقیقات پیشرفته ‌شبیه‌سازی و جداسازی، ﺻﻨﺪوق ﭘﺴﺘﯽ: 5931-143995، ﺗﻬﺮان- اﯾﺮان

2 ﭘﮋوﻫﺸﮑﺪه رآﮐﺘﻮر و اﯾﻤﻨﯽ ﻫﺴﺘﻪای، ﭘﮋوﻫﺸﮕﺎه علوم و فنون ﻫﺴﺘﻪای، ﺳﺎزﻣﺎن اﻧﺮژی اﺗﻤﯽ اﯾﺮان، ﺻﻨﺪوق ﭘﺴﺘﯽ: 836-14395، ﺗﻬﺮان- اﯾﺮان

چکیده

از نظر اقتصادی افزایش مصرف سوخت (بالاتر از 50 GWd/t ) میله‌های رآکتورهای هسته‌ای و در پی آن افزایش طول سیکل کاری رآکتور، یک نیروی محرکه قوی برای گنجاندن مدل‌های مصرف بالای سوخت در توسعه کدهای تحلیل عملکرد سوخت می‌باشد. در این تحقیق، به منظور بررسی رفتار گازهای حاصل از شکافت برای ساختار مصرف بالای سوخت دو مدل نیمه‌تجربی برای توصیف تشکیل مصرف بالای سوخت (HBS) در کد محاسباتی 02-MSFGR برای تحلیل رفتار گاز شکافت در مقیاس مزو (میانی)، پیاده‌سازی شده است، که شامل فرایند چندضلعی شدن/ تبلور مجدد و تخلیه گاز شکافت درون‌دانه‌ای است. برای این منظور، با استفاده از داده‌های موجود در مراجع برای اندازه دانه (اندازه‌گیری‌ شده با پردازش تصویر) در موقعیت‌های شعاعی که در آن تغییر ساختار اتفاق افتاده است، رابطه نیمه‌تجربی برای اندازه شعاع دانه و همچنین میزان حجم تغییرساختار یافته در سوخت برحسب مصرف سوخت ارائه شده است. در نهایت تغییرات میزان غلظت گاز حاصل از شکافت در طول دوره تابش تا رسیدن به مصرف بالای سوخت با داده‌های تجربی ارائه شده در مراجع مقایسه گردید که حاکی از قابل قبول بودن نتایج می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Development and implementation of high burnup structure model in nuclear fuels to analyze the behavior of fission gases

نویسندگان [English]

  • M.H. Porhemmat 1 2
  • M. Abbasi 1

1 |Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.BOX: 14395-836, Tehran – Iran

2 |Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.BOX: 14395-836, Tehran – Iran

چکیده [English]

From an economic perspective, increasing nuclear fuel burnup (up to 50 GWd/t) and thereby extending reactor cycles are compelling reasons to develop models that incorporate High Burnup Structure (HBS) phenomena into fuel performance codes. This research focuses on investigating the behavior of fission gases within HBS by implementing two semi-empirical models in the MSFGR-02 code. These models describe the formation of HBS, encompassing polygonization (recrystallization) and the release of intra-granular fission gas. The study utilizes grain size measurements obtained from references and applies them to radial positions where data reconstruction was incomplete. This approach yields semi-empirical relationships for grain radius size and restructured volumetric fraction as functions of fuel burnup. Comparisons between changes in fission gas concentration during irradiation until HBS formation and experimental data from references demonstrate acceptable agreement.

کلیدواژه‌ها [English]

  • High fuel burnup
  • Recrystallization
  • Fission gas release
  • Nuclear fuel performance
  1. Soba A, Denis A, Romero L, Villarino E, Sardella F. A high burnup model developed for the DIONISIO code. Journal of Nuclear Materials. 2013;433(1-3):160-166.

 

  1. Lassmann K. TRANSURANUS: a fuel rod analysis code ready for use. Journal of Nuclear Materials. 1992;188:295-302.

 

  1. Rest J. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels. Journal of Nuclear Materials. 2004;326(2-3):175-184.

 

  1. Jernkvist L.O. Modelling of fine fragmentation and fission gas release of UO2 fuel in accident conditions. EPJ Nuclear Sciences & Technologies. 2019;5:11.

 

  1. Denis A, Soba A. Simulation of pellet-cladding thermomechanical interaction and fission gas release. Nuclear Engineering and Design. 2003;223(2):211-229.

 

  1. Lemes M, Soba A, Denis A. An empirical formulation to describe the evolution of the high burnup structure. Journal of Nuclear Materials. 2015;456:174-181.

 

  1. Veshchunov M, Shestak V. Model for evolution of crystal defects in UO2 under irradiation up to high burn-ups. Journal of Nuclear Materials. 2009;384(1):12-18.

 

  1. Nogita K, Une K. Irradiation-induced recrystallization in high burnup UO2 fuel. Journal of Nuclear Materials. 1995;226(3):302-310.

 

  1. Cunningham M, Freshley M, Lanning D. Development and characteristics of the rim region in high burnup UO2 fuel pellets. Journal of Nuclear Materials. 1992;188:19-27.

 

  1. Baron D, Kinoshita M, Thevenin P, Largenton R. Discussion about HBS transformation in high burn-up fuels. Nuclear Engineering and Technology. 2009;41(2):199-214.

 

  1. Rondinella V.V, Wiss T. The high burn-up structure in nuclear fuel. Materials Today. 2010;13(12):24-32.

 

  1. Spino J, Vennix K, Coquerelle M. Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40–67 GWd/tM. Journal of Nuclear Materials. 1996;231(3):179-190.

 

  1. Gerczak T.J, Parish C.M, Edmondson P.D, Baldwin C.A, Terrani K.A. Restructuring in high burnup UO2 studied using modern electron microscopy. Journal of Nuclear Materials. 2018;509:245-259.

 

  1. Lassmann K, Walker C.T, Van de Laar J, Lindström F. Modelling the high burnup UO2 structure in LWR fuel. Journal of Nuclear Materials. 1995;226(1-2):1-8.

 

  1. Schubert A, Van Uffelen P, Van de Laar J, Walker C.T, Haeck W. Extension of the TRANSURANUS burn-up model. Journal of Nuclear Materials. 2008;376(1):1-10.

 

  1. Khvostov G, Novikov V, Medvedev A, Bogatyr S. Approaches to modeling of high burn-up structure and analysis of its effects on the behaviour of light water reactor fuels in the START-3 fuel performance code. Japan: N.p. 2005.

 

  1. Holt L, Schubert A, Van Uffelen P, Walker C.T, Fridman E, Sonoda T. Sensitivity study on Xe depletion in the high burn-up structure of UO2. Journal of Nuclear Materials. 2014;452(1-3):166-172.

 

  1. Ray I. Observation of a high burnup rim-type structure in an advanced plutonium–uranium carbide fuel. Journal of Nuclear Materials. 1997;250(2-3): 242-243.

 

  1. Spino J, Stalios A.D, Santa Cruz H, Baron D. Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burn-up and temperature. Journal of Nuclear Materials. 2006;354(1-3):66-84.

 

  1. Noirot J, Pontillon Y, Yagnik S, Turnbull J.A. Post-irradiation examinations and high-temperature tests on undoped large-grain UO2 discs. Journal of Nuclear Materials. 2015;462:77-84.

 

  1. Lassmann K. Numerical algorithms for intragranular diffusional fission gas release incorporated in the TRANSURANUS code. in Proceedings of International Seminar on Fission Gas Behavior in Water Reactor Fuels. Cadarache. France. 2000.

 

  1. Noirot J, Lamontagne J, Nakae N, Kitagawa T, Kosaka Y, Tverberg T. Heterogeneous UO2 fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases. Journal of Nuclear Materials. 2013;442(1-3):309-319.

 

  1. Kolmogorov A.N. On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR, Math. Ser. 1937;1(3):355-359.

 

  1. Rest J, Cooper M.W.D, Spino J, Turnbull J.A, Van Uffelen P, Walker C.T. Fission gas release from UO2 nuclear fuel: A review. Journal of Nuclear Materials. 2019;513:310-345.

 

  1. Van Uffelen P, Hales J, Li W, Rossiter G, Williamson R. A review of fuel performance modelling. Journal of Nuclear Materials. 2019;516:373-412.

 

  1. Van Uffelen P, Hales J, Li W, Rossiter G, Williamson R. A review of fuel performance modelling. Journal of Nuclear Materials. 2018;516(INL/JOU-18-45934-Rev000).

 

  1. Pastore G, Pizzocri D, Rabiti C, Barani T, Van Uffelen P, Luzzi L. An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution. Journal of Nuclear Materials. 2018;509:687-699.

 

  1. Pizzocri D, Pastore G, Barani T, Magni A, Luzzi L, Van Uffelen P, Pitts S.A, Alfonsi A. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools. Journal of Nuclear Materials. 2018;502:323-330.

 

  1. Turnbull J.A, Friskney C.A, Findlay J.R, Johnson F.A, Walter A.J. The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide. Journal of Nuclear Materials. 1982;107(2-3):168-184.

 

  1. Bre´ Mier S, Walker C. Radiation-enhanced diffusion and fission gas release from recrystallised grains in high burn-up\hbox {UO} _ {2} nuclear fuel. Radiation Effects and Defects in Solids. 2002;157(3):311-322.

 

  1. Pizzocri D, Cappia F, Luzzi L, Pastore G, Rondinella V.V, Van Uffelen P. A semi-empirical model for the formation and depletion of the high burnup structure in UO2. Journal of Nuclear Materials. 2017;487:23-29.

 

  1. Ham F.S. Theory of diffusion-limited precipitation. Journal of Physics and Chemistry of Solids. 1958;6(4):335-351.

 

  1. Turnbull J. The distribution of intragranular fission gas bubbles in UO2 during irradiation. Journal of Nuclear Materials. 1971;38(2):203-212.

 

  1. Pizzocri D, Barani T, Bruschi E, Luzzi L, Van Uffelen P, Pastore G. Modelling of burst release in oxide fuel and application to the Transuranus code. 2015.

 

  1. White R, Tucker M. A new fission-gas release model. Journal of Nuclear Materials. 1983;118(1):1-38.

 

  1. Walker C.T. Assessment of the radial extent and completion of recrystallisation in high burn-up UO2 nuclear fuel by EPMA. Journal of Nuclear Materials. 1999;275(1):56-62.

 

  1. Lemoine F, Baron D, Blanpain P. Key parameters for the High Burnup Structure formation thresholds in oxide fuels. in Proc. of the LWR Fuel Performance/TopFuel/WRFPM conference. 2010.