نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده و پژوهشکده علوم پایه، دانشگاه جامع امام حسین(ع)، صندوق پستی1698715461، تهران- ایران

چکیده

در این پژوهش، خواص حفاظتی پرتوهای گاما نانوهیدروکسید‌‌های آلاییده‌‌شده با آهن، را با محاسبه کمیت‌های تأثیرگذار مانند: لایه نیم‌مقدار (HVL)، مسیر آزاد میانگین (MFP)، ضریب تضعیف جرمی (𝜇m) و ضریب تضعیف خطی (LAC) در محدوده 0/015 تا 15 مگا الکترون‌ولت با استفاده از ابزار شبیه‌‌سازی مونت‌کارلو Geant4 بررسی شده است. برای بررسی تفاوت کمیت ضریب تضعیف جرمی مواد نانویی با مواد معمولی، نتایج شبیه‌سازی با داده‌های مستخرج از پایگاه دادۀ  NIST-XCOMکه تنها قابلیت محاسبه ضریب تضعیف جرمی مواد معمولی را دارد، مقایسه می‌شود. در این مقایسه، اولاً مشاهده می‌شود که داده‌های مستخرج از این پایگاه و نتایج ابزار شبیه‌سازی Geant4 با افزایش غلظت آلاییدگی آهن با یکدیگر متفاوت خواهند بود. ثانیاً، درصد انحراف  (RD)بین داده‌های مستخرج از این پایگاه با نتایج حاصل از ابزار شبیه‌سازی Geant4، از 0/1 به 3/2 درصد افزایش می‌یابد. دلیل این انحراف، افزایش غلظت آلاییدگی نانوآهن در ترکیب می‌باشد. بنابراین، ترکیب نانوهیدروکسید با بالاترین درصد آلاییدگی آهن (48Fe-HAp-)، از نظر چگالی مطلوب‌ترین ترکیب حفاظی را در مقایسه با مواد حفاظ منتخب دیگر دارد که یک ترکیب سبک و آنتی‌باکتریال برای حفاظت از پرتوهای گاما در این ناحیه از انرژی می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Shielding properties of iron-doped nano-hydroxides against gamma-rays

نویسندگان [English]

  • M.R. Alipoor
  • M. Eshghi

Department of Physics, Faculty and Research Institute of Basic Sciences, Imam Hossein University (AS), P.O. Box 1698715461, Tehran- Iran

چکیده [English]

In this research, the gamma ray protective properties of iron-doped nano-hydroxides were evaluated by calculating effective quantities such as the half-value layer (HVL), mean free path (MFP), mass attenuation coefficient (𝜇m) and linear attenuation coefficient (LAC) in the range of 0.015 to 15 MeV using the Geant4 Monte Carlo simulation tool. To investigate the quantitative difference between the mass attenuation coefficient of nano-materials and normal materials, the simulation results were compared with data extracted from the NIST-XCOM database, which can only calculate the mass attenuation coefficient of normal materials. In this comparison, it was observed that the data extracted from the database and the results of the Geant4 simulation tool differed as the concentration of iron contamination increased. The percentage of deviation (RD) between the data extracted from the database and the results of the Geant4 simulation tool increased from 0.1 to 3.2%. This deviation was attributed the increase in the concentration of nano-iron contamination in the composition. Therefore, the nano-hydroxide composition with the highest percentage of iron contamination (Fe-HAp-48) had the most favorable protective composition in terms of density compared to other selected protective materials. This composition, which is lightweight and antibacterial, provides effective protection against gamma rays in the specified energy range.

کلیدواژه‌ها [English]

  • Gamma-ray
  • Geant4 simulator
  • Nano-hydroxyapatite
  • Monte Carlo method
  1. Chen Q, Naseer K.A, Marimuthu K, Kumar P, Miao B, Mahmoud K.A, Sayyed M.I. Influence of Modifier Oxide on the Structural and Radiation Shielding Features of Sm3+-Doped Calcium Telluro-Fluoroborate Glass Systems. Journal of the Australian Ceramic Society. 2020;57(1):275–286.

 

  1. McCaffrey J.P, Shen H, Downton B, Mainegra-Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics. 2007;34(2):530–537.

 

  1. Hu H, Wang Q, Qin J, Wu Y.L, Zhang T, Xie Z, Jiang X, Zhang G, Xu H, Xiang-Yang Z, Zhang J, Liu W, Li Z, Zhang B, Li L, Zhang S, Ouyang X, Zhu J, Zhao Y, Zhan Y. Study on Composite Material for Shielding Mixed Neutron and gamma-Rays. IEEE Transactions on Nuclear Science. 2008;55(4):2376–2384.

 

  1. Hu G, Shi G, Hu H, Yang Q, Yu B, Sun W. Development of gradient composite shielding material for shielding neutrons and gamma rays. Nuclear Engineering and Technology. 2020;52(10):2387–2393.

 

  1. Zahran H.Y, Yousef E.S, Alqahtani M, Reben M, Algarni H, Umar A, Albargi H, Yahia I.S, Sabry N. Analysis of the Radiation Attenuation Parameters of CU2HGI4, AG2HGI4, and (CU/Ag/HGI) Semiconductor Compounds. Crystals. 2022;12(2):276.

 

  1. Selly J.B, Roga A.U, Berek N.C. Efek paparan radiasi pengion terhadap jumlah leukosit pekerja di instalasi radiologi rumah sakit di kupang, ntt. Medica Hospitalia: Journal of Clinical Medicine. 2022;9(1):14–19.

 

  1. Bystrov V, Piccirillo C, Tobaldi D.M, Castro P.M.L, Coutinho J.a.P, Kopyl S, Pullar R.C. Oxygen Vacancies, the Optical Band Gap (Eg) and Photocatalysis of Hydroxyapatite: Comparing Modelling with Measured Data. Applied Catalysis B-environmental. 2016;196:100–107.

 

  1. Hołyńska B. Study of the Effect of Grain Size Heterogeneity in the X-Ray Absorption Analysis of Simulated Aqueous Slurries. Spectrochimica Acta Part B: Atomic Spectroscopy. 1972;27(6):237–245.

 

  1. Kim S.Y, Jun J, Lee M.G. Particle size-dependent pulverization of b4c and generation of b4c/sts nanoparticles used for neutron absorbing composites. Nuclear Engineering and Technology. 2014;46(5):675–680.

 

  1. Bayat M, He Y, Ko F, Michelson D.G, Mei A. Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer. 2014;55(3):936–943.

 

  1. Artem’ev V.A. Estimate of the Attenuation of γ Rays by Nanostructural Materials. Atomic Energy. 2002;93:665–672.

 

  1. Nambiar S, Osei E, Yeow J.T.W. Polymer Nanocomposite-Based Shielding against Diagnostic X-Rays. Journal of Applied Polymer Science. 2012;127(6):4939–4946.

 

  1. Botelho M.Z, Künzel R, Okuno E, Levenhagen R.S, Basegio T.M, Bergmann C.P. X-Ray Transmission through Nanostructured and Microstructured CuO Materials. Applied Radiation and Isotopes. 2011;69(2):527–530.

 

  1. Martı́Nez G, Malumbres A, Mallada R, Hueso J.L, Irusta S, Bomatí-Miguel O, Santamarı́A J. Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology. 2012;23(42):425605.

 

  1. Roh Y, Vali H, Phelps T.J, Moon J.W. Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol. 2006;6(11):3517-3520.

 

  1. Wu W, He Q, Jiang C. Magnetic Iron Oxide Nanoparticles: Synthesis and surface Functionalization Strategies. Nanoscale Research Letters. 2008;3(11).

 

  1. Marișca O.T, Leopold N. Anisotropic Gold Nanoparticle-Cell Interactions Mediated by Collagenm. Materials. 2019;12(7):1131.

 

  1. Landström L, Elihn K, Boman M, Granqvist C.G, Heszler P. Analysis of Thermal Radiation from Laser-Heated Nanoparticles Formed by Laser-Induced Decomposition of Ferrocene. Applied Physics A. 2005;81(4):827–833.

 

  1. Vallet-Regí M, González-Calbet J.M. Calcium Phosphates as Substitution of Bone Tissues. Progress in Solid State Chemistry. 2004;32(1–2):1–31.

 

  1. Suchanek W, Yoshimura M. Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants. Journal of Materials Research. 1998;13(1):94–117.

 

  1. Feki H.E, Savariault J.M, Salah A.B. Structure Refinements by the Rietveld Method of Partially Substituted Hydroxyapatite: Ca9Na 0.5(PO4) 4.5(CO3)1.5 (OH)2. Journal of Alloys and Compounds. 1999;287(1–2):114–120.

 

  1. Badawy S.M, El-Latif A.A. Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polymer Composites. 2015;38(5):974–980.

 

  1. Samb-Joshi K.M, Sethi Y.A, Ambalkar A.A, Sonawane H, Rasale S.P, Panmand R.P, Patil R, Kale B.B, Chaskar M.G. Lignin-Mediated biosynthesis of ZNO and TIO2 nanocomposites for enhanced antimicrobial activity. Journal of Composites Science. 2019;3(3):90.

 

  1. Sagadevan S, Oh W.C, Comprehensive Utilization and Biomedical Application of MXenes-A Systematic Review of Cytotoxicity and Biocompatibility. Journal of Drug Delivery Science and Technology. 2023;85:104569.

 

  1. Curcio M, Rau J.V, Santagata A, Teghil R, Laureti S, De Bonis A. Laser Synthesis of Iron Nanoparticle for Fe Doped Hydroxyapatite Coatings. Materials Chemistry and Physics. 2019;225:365–370.

 

  1. Anjaneyulu U, Vijayalakshmi U. Preparation and Characterization of Novel Sol-Gel Derived Hydroxyapatite/Fe3O4 Composites Coatings on Ti-6Al-4V for Biomedical Applications. Materials Letters. 2017;189:118–121.

 

  1. Chatzipapas K.P, Sakata D, Shin W.G, Zein S.A, Brown J.M.C, Kyriakou I. Geant4-DNA Simulation of Human Cancer Cells Irradiation with Helium Ion Beams. Physica Medica. 2023;112:102613.

 

  1. Thiam C, Breton V, Donnarieix D, Habib B, Maigne L. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Physics in Medicine and Biology. 2008;53(11):3039–3055.

 

  1. Alipoor M, Eshghi M. A Comprehensive Study of Gamma-Rays Shielding Features of Binary Compounds. Progress in Physics of Applied Materials. 2024;4(4):59-67.

 

  1. Martínez-Rovira I, Sempau J, Prezado Y. Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy. Medical Physics. 2011;39(1):119–131.

 

  1. Alipoor M, Eshghi M. Nickel/Multiwalled Carbon Nanotube Composites as Gamma-Ray Shielding. NANO. 2024;19(6): 2450027.

 

  1. Ahmadi S.J, Rafiei-Sarmazdeh Z, Zahedi Dizji S.M, Jafari S.H, Kasesaz Y. Comparison of performance of composite and nanocomposites based on heavy polyethylene and boron nitride for use in neutron shielding. Journal of Nuclear Sciences and Techniques. 97(3);79-88 (2021) (In Persian).

 

  1. Arwaneh A, Asadi A, Hosseini S.A. Investigating the properties of gamma ray shielding with increasing 2TiO concentration in 3O2Al-4O3Pb-ZnO-3O2Bi glass sample with simulation and computing tools. Journal of Nuclear Sciences and Techniques. 2024;106(4):76-84 [In Persian].