نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

2 آزمایشگاه مرکزی، ﭘﮋوﻫﺸﮕﺎه ﻋﻠﻮم و ﻓﻨﻮن ﻫﺴﺘﻪای، ﺳﺎزﻣﺎن اﻧﺮژی اﺗﻤﯽ اﯾﺮان، صندوق پستی: 8486-11365، تهران- ایران

چکیده

در این مقاله، آلیاژ ۵۰۵۲ به‌عنوان یکی از آلیاژهای پیشنهادی آلومینیم برای استفاده در ساخت غلاف سوخت‌های هسته‌ای، انتخاب و رفتار خوردگی آن در الکترولیت حاوی NaCl و Na2SO4 مورد مطالعه قرار گرفته است. از رو‌ش‌های پلاریزاسیون پتانسیودینامیکی و امپدانس الکتروشیمیایی برای مطالعات خوردگی و از روش‌های میکروسکوپ الکترونی روبشی (Scanning Electron Microscopy, SEM)، طیف‌سنجی تبدیل فوریه فروسرخ (Fourier-Transform Infrared Spectroscopy, FTIR) و پراش پرتو ایکس (X-ray Diffraction, XRD) برای مطالعات مورفولوژی و مشخصه‌یابی محصولات خوردگی آلومینیم 5052 استفاده شده است. در الکترولیت Na2SO4 افزایش زمان تماس الکترولیت با نمونه، باعث بهبود مقاومت خوردگی نمونه شده است به‌طوری‌که جریان خوردگی کاهش یافته (جریان خوردگی از 5.4- mA/cm2 10 برای 1 ساعت به mA/cm2 10-6 برای 11 روز رسیده است) و آلومینیم 5052 محدوده پتانسیل روئین‌شدگی گسترده‌تر و جریان روئین‌شدگی کمتری را در 11 روز نشان داده است. در الکترولیت NaCl، افزایش زمان تماس الکترولیت تقریباً باعث حذف منطقه روئین‌شدگی شده است. ایجاد خوردگی حفره‌ای و تشدید اندازه/ تعداد حفره‌ها از دیگر اثرات مشاهده شده به‌دلیل افزایش زمان تماس الکترولیت NaCl با آلومینیم 5052 است. این نتایج نشان می‌دهد که با افزایش زمان تماس الکترولیت با نمونه‌ها، ترکیب شیمیایی الکترولیت (حضور یا عدم حضور آنیون‌های کلر و سولفات) بیشتر بر رفتار روئین‌شدگی آلومینیم 5052 تأثیرگذار است. همچنین اعمال تنش کششی، اثری تخریبی بر لایه روئین‌کننده را نشان داد. به‌طوری‌که اعمال تنش باعث حذف رفتار روئین‌شدگی در آلومینیم 5052 شده است.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of time and tensile stress on the corrosion behavior of aluminum 5052 in NaCl and Na2SO4 electrolytes

نویسندگان [English]

  • H. Adelkhani 1
  • F. Parsayan 1
  • L. Irannejad 2

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran

2 Central Laboratory, Nuclear Science and Technology Research Institute, AEOI, P.O.BOX: 11365-8486, Tehran – Iran

چکیده [English]

In this paper, aluminum 5052 (AA 5052), one of the candidate alloys for nuclear fuel cladding, has been selected for study regarding its corrosion behavior in an electrolyte containing NaCl and Na2SO4. Potentiodynamic polarization and electrochemical impedance methods were used to investigate the corrosion of AA 5052. The morphology and characterization of corrosion products were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FTIR) methods. In the Na2SO4 electrolyte, the corrosion resistance of the sample improved over time, with the corrosion current decreasing from 10-5.4 mA/cm2 after 1 hour to 10-6 mA/cm2 after 11 days. AA 5052 showed a wider passivation potential range (ΔEpass) and less passivation current (ipass) after 11 days. In the NaCl electrolyte, pitting corrosion, elimination of the passivation zone, and an increase in the number and size of pits were observed with increased time. These results confirm that the time has an influence on the passivation behavior of AA 5052, primarily dependent on the chemical composition of the electrolyte (presence or absence of chlorine and sulfate anions). Additionally, the application of tensile stress showed a destructive effect on the passive layer, as the passivation behavior of AA 5052 was eliminated.

کلیدواژه‌ها [English]

  • Aluminum
  • AA 5052
  • Corrosion
  • Fuel clad
  • Time
  • Tensile stress
  1. Zayermohammadi Rishehri H, Zaidabadi Nejad M. Investigating new cladding material for NuScale reactor based on neutronic and thermo-mechanical properties using M5, E110, Zircaloy 4 and FeCrAl claddings. Journal of Nuclear Science and Technology. 2024;107(2):29-36.

 

  1. Foratirad H, Ghanadi Maragheh M, Baharvandi H.R. Investigation of the oxidation behavior of Ti3SiC2 with applicability as a nuclear fuel cladding. Journal of Nuclear Science and Technology. 2019;89(3):63-72.

 

  1. Sindelar R.L, Peacock Jr. H.B, Lam P.S, Iyer N.C, Louthan Jr. M.R. Acceptance criteria for interim dry storage of aluminium-alloy clad spent nuclear fuels. Westinghouse Savannah River Company WSRC-TR-95-0347. 1996;1-34.

 

  1. Setiawan J, Pribadi S, Jamaludin A, Sungkono, Al Hasa M.H. Structural analysis of Al alloys for nuclear fuel cladding. AIP Conference Proceedings. 2020;2262:050002. https://doi.org/10.1063/5. 0015710.

 

  1. IAEA Nuclear Energy Series No. NP-T-5.2 Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities. International Atomic Energy Agency, VIENNA. 2011.

 

  1. Pawel R.E, Yoder G.L, Felde D.K, Montgomery B.H, McFee M.T. The corrosion of 6061 Aluminum under heat transfer conditions in the ANS Corrosion Test Loop. Oxidation of Metals. 1991;36.

 

  1. Maksimkin O.P, Yarovchuk A.V, Turubarova L.G, Aulova D.S, Karbysheva S.A, Rusakova A.V. Influence of neutron irradiation on intergranular corrosion and corrosion cracking of low-alloyed aluminium alloy SAV-1. Probl. Atom. Sci. Tech. 2011;108-115.

 

  1. Kanjana K, Ampornrat P, Channuie J. Gamma-radiation-induced corrosion of aluminum alloy: low dose effect. Journal of Physics. Conf. 2017;860.

 

  1. Kanjana K, Channuie J. Corrosion of neutron/gamma-irradiated aluminium alloy 6061. Songklanakarin J. Sci. Technol. 2019;41(2):445-449.

 

  1. Leenaers A, Koonen E, Parthoens Y, Lemoine P, Van den Berghe S. Post-irradiation examination of AlFeNi cladded U3Si2 fuel plates irradiated under severe conditions. J. Nucl. Mater. 2008;375:243.

 

  1. Sindelar R.L, Peacock Jr. H.B, Lam P.S, Iyer N.C, Louthan Jr. M.R. Acceptance criteria for interim dry storage of aluminium-alloy clad spent nuclear fuels. Westinghouse Savannah River Company WSRC-TR-95-0347. 1996;1-34.

 

  1. Kim Y.S, Hofman G.L, Robinson A.B, Snelgrove J.L, Hanan N. Oxidation of aluminum alloy cladding for research and test reactor fuel. Journal of Nuclear Materials. 2008;378(2):220-228.

 

  1. Wintergerst M, Dacheux N, Datcharry F, Herms E, Kapusta B. Corrosion of the AlFeNi alloy used for the fuel cladding in the Jules Horowitz research reactor. J. Nucl Mater. 2009;48:113-119.

 

  1. Curtius H, Kaiser G, Paparigas Z, Ufer K, Müller E, Enge R, Brücher H. Untersuchungen zum Verhalten von Forschungsreaktor-Brennelementen (FR-BE) in den Wirtsgesteinsformationswässern möglicher Endläger. 2006. https://d-nb.info/98788882X/34.

 

  1. Rest J, Kim Y.S, Holmes G.L, Meyer M.K, Hayes S.L. U-Mo Fuels Handbook. Argonne National Laboratory. ANL-09/31. 2006.

 

  1. Ghali E. Aluminum and Aluminum Alloys. In Uhlig's Corrosion Handbook. 2000.

 

  1. Aluminium Finishing. https://alfed.org.uk/wp-content/uploads/2014/02/Aluminium-Corrosion.pdf. 2014.

 

  1. Aluminum and Aluminum Alloys. ASM Specialty Handbook. 1993.

 

  1. Ghali E. Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing. 2010.

 

  1. Corrosion: Fundamentals, Testing, and Protection. ASM Handbook. 2003;13A.

 

  1. Xu X.T, Xu H.W, Wang Y, Zhang X.Y, Tan X.J. Cerium chloride and L-arginine as effective hybrid corrosion inhibitor for 5052 aluminum alloy in 3.5% NaCl solution. Int. J. Electrochem. Sci. 2022;17. doi: 10.20964/2022.12.24.

 

  1. ASTM G30–97. Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens. 2003.

 

  1. ASTM G64-21. Standard Classification of Resistance to Stress-Corrosion Cracking of Heat-Treatable Aluminum Alloys. 2021.

 

  1. https://www.euralliage.com/aluminium_english.htm.

 

  1. Novikov V, Nesterov B, Kon’kov V, Sablin M, Troyanov V, Izhutov A, Burukin A, Shahmut’ E, Enin A, Agishev V, Pimenov U, Out of Reactors Investigations of Corrosion Properties Cladding from New Zirconium Alloys as Applied to Conditions of Reactor-Plant WWER-1200 (AES-2006) and the Program of This Alloys. Irradiation Tests. https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/056/43056318.pdf.

 

  1. Peacock Jr. H.B, Sindelar R.L, Lam P.S, Murphy T.H. Evaluation of Corrosion of Base Reactor Fuel Cladding During Dry Storage Aluminum Materials. Westinghouse Savannah River Company Savannah River Site. 1995.

 

  1. Buck E.C, Wittman R.S, Hanson B.D. Independent Technical Review of INL Aluminum-Clad Spent Nuclear Fuel (ASNF) Oxide Layer Radiolytic Gas Generation Resolution. PNNL-30701. 2020.

 

  1. Li W, Bach M, Walters L, St Lawrence S, Baker K, Donohue S. Effect of neutron fluence on microstructure and mechanical properties of Al 5052 irradiated in the National Research Universal (NRU) reactor. Journal of Nuclear Materials. 2019;522:144-157.

 

  1. IAEA. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting held in Kiev, Ukraine, International Atomic Energy Agency, Report IAEA-TECDOC-CD-1692. 2010.

 

  1. Wang S.G, Bai X.D, Chen H.M, Fan Y.D, Zhao Q. Systematic Investigation of Irradiation Corrosion of Nuclear Materials. Corrosion. 1998;131.

 

  1. Chen Y, Urquidi-Macdonald M, Macdonald D.D. Transient Oxide Film Growth on Zirconium in High Temperature Aqueous Solutions. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors – Edited by T.R. Allen, P.J. King, and L. Nelson TMS (The Minerals, Metals & Materials Society), 2005, Park P. Y., M. Urquidi-Macdonald, D.D. Macdonald, Application of the PDM (Point Defect Model) to the Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors, in ICONE 12. 2004;605-613.

 

  1. Milagre M.X, Donatus U, Mogili N.V, Machado C.S.C, Araujo J.V.S, Klumpp R.E, Fernandes S.M.C, Souza J.A.B.D, Costa I. Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy. Journal of Nuclear Materials. 2022. https://doi.org/10.1016/j.jnucmat.2020.152320.

 

  1. Huang J, Lister D, Uchida S, Liu L. The corrosion of aluminium alloy and release of intermetallic particles in nuclear reactor emergency core coolant: Implications for clogging of sump strainers. Nuclear Engineering and Technology. 2019;51(5):1345-1354.

 

  1. Scarabotto M, Birriel E.J, Scienza L.C. Influence of Cl- and SO42- ions on the electrochemical behaviour of 3105 and 5052 aluminum alloys. ICC INTERCORR WCO 2021-328.

 

  1. Martinez-Viademonte M.P, Abrahami S.T, Hack T, Burchardt M, Terryn H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection. Coatings. 2020;10:1106. 10.3390/coatings10111106.

 

  1. Zeng Z, Choudhary S, Esmaily M, Benn F, Derra T, Hora Y, Kopp A, Allanore A, Birbilis N. An additively manufactured magnesium-aluminium alloy withstands seawater corrosion. Npj Mater Degrad. 2022;6:32. https://doi.org/10.1038/s41529-022-00241-5.

 

  1. Parangusan H, Bhadra J, Al-Thani N. A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emergent Mater. 2021;4:1187–1203. https://doi.org/10.1007/s42247-021-00194-6.

 

  1. Zhou L, Sheng Z, Liu Q, Xin L, Chen K, Chen S. Enhanced SCC resistance of 7056 aluminium alloy by Y and Si additions. Materials Science and Technology. 2021;37(18):1421-1434. DOI: 10.1080/02670836.2021.2013035.

 

  1. Romero Toledo R, Ruíz Santoyo V, Moncada Sánchez D, Martínez Rosales M. Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method. Nova Scientia. 2018;10(20).

 

  1. L’Haridon-Quaireau S, Laot M, Colas K, Kapusta B, Delpech S, Gosset D. Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers. Journal of Alloys and Compounds. 2020;833:155146.