نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

استخراج حلالی مایع- مایع یکی از متداول‌ترین روش‌ها برای خالص‌سازی توریم از محلول‌های آبی چندجزیی است. در این مطالعه توانایی استخراج‌کننده‌های آلی مختلف شامل تری بوتیل فسفات، دی (2-اتیل هگزیل) فسفریک اسید و دی (4،2،2- تری متیل پنتیل) فسفینیک اسید برای جداسازی توریم از یک محلول آبی چندجزیی حاوی عناصر اورانیم، وانادیم و آهن در یک محیط نیتراتی بررسی شد. نتایج تجربی نشان داد که ترتیب استخراج عناصر برای دو استخراج‌کننده تری بوتیل فسفات و دی 2-اتیل هگزیل فسفریک اسید به‌صورت اورانیم>توریم>آهن>وانادیم و برای استخراج‌کننده سیانکس 272 به‌صورت توریم>اورانیم>وانادیم>آهن می‌باشد. همچنین ضریب جداسازی توریم نسبت به اورانیم، وانادیم و آهن توسط سیانکس 272 به‌ترتیب برابر 4/63، 4/384 و 6/615 به‌دست آمد. بررسی عوامل مختلف بر فرایند استخراج حلالی نشان داد که در شرایط زمان تماس 15 دقیقه، pH فاز آبی برابر 5/0، نسبت فاز آبی به آلی برابر 1 و غلظت استخراج‌کننده سیانکس 272 برابر 1/0 مولار بیشترین درصد استخراج توریم به‌دست می‌آید و درصد استخراج توریم، اورانیم، وانادیم و آهن به‌ترتیب برابر 6/98، 8/37، 6/10 و 1/11 درصد می‌باشد. همچنین اسیدهای معدنی مختلف شامل محلول‌های نیتریک اسید، سولفوریک اسید و کلریدریک اسید برای فرایند تهی‌سازی عناصر از فاز آلی باردار مطالعه شد. نتایج فرایند تهی‌سازی نشان داد که با استفاده از محلول سولفوریک اسید 4 مولار می‌توان به درصد بازیابی توریم بالاتر از 91 درصد از فاز آلی باردار رسید.

کلیدواژه‌ها

عنوان مقاله [English]

Separation of thorium from a multi-component aqueous solution by liquid-liquid extraction method: investigation and comparison of different solvents

نویسندگان [English]

  • F. Khanramaki
  • A.R. Keshtkar
  • H. Sohbatzadeh

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran

چکیده [English]

Liquid-liquid extraction is one of the most common methods for purifying thorium from multicomponent aqueous solutions. In this study, the ability of different organic solvents, such as tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (DEHPA), and di(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272), to separate thorium from a multicomponent aqueous nitrate solution containing uranium, vanadium, and iron elements was investigated. The experimental results showed that the extraction efficiency of elements for tributyl phosphate and di-2-ethylhexyl phosphoric acid is uranium > thorium > iron > vanadium, and for Cyanex 272 is thorium > uranium > vanadium > iron, respectively. Additionally, the separation factor of thorium compared to uranium, vanadium, and iron by Cyanex 272 was calculated as 63.4, 384.4, and 615.6, respectively. The investigation of various process parameters on the solvent extraction process revealed that at a contact time of 15 minutes, a pH of the aqueous phase equal to 0.5, a ratio of aqueous to organic phase equal to 1, and a concentration of Cyanex 272 equal to 0.1 M, the highest percentage of thorium extraction is achieved, with extraction efficiencies of thorium, uranium, vanadium, and iron at 98.6%, 37.8%, 10.6%, and 11.1%, respectively. Furthermore, different mineral acids, including nitric acid, sulfuric acid, and hydrochloric acid solutions, were evaluated for the stripping process from the loaded organic phase. The results demonstrated that utilizing a 4 M sulfuric acid solution could achieve thorium stripping efficiency above 91% from the loaded organic phase.

کلیدواژه‌ها [English]

  • Liquid-liquid extraction
  • Thorium separation
  • Multi-component solutions
  • Nitrate solution
  • Stripping
  1. Lowenstern J.B, Charlier B.L.A, Clynne M.A, Wooden J.L. Extreme U–Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation. J. Petrol. 2006;47:2105–2122.

 

  1. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac225 from Th-229 for targeted a therapy. Anal. Chem. 2005;77:6288–6291.

 

  1. Thorium fuel cycles: potential benefits and challenges. In International Atomic Energy Agency. IAEA-Tecdoc-1450, ISBN 92–0–103405–9. Ed. Vienna. 2005.

 

  1. Thorium fuel utilization options and trends. IAEA-TECDOC-1319, Proceeding of three IAEA meetings held in Vienna in 1997, 1998 and 1999. 2002 November.

 

  1. Radhika S, Kumar B.N, Kantam M.L, Reddy B.R. Liquid–liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents. Sep. Purif. Technol. 2010;75:295–302.

 

  1. Xie F, Zhang T.A, Dreisinger D, Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014;56:10–28.

 

  1. Habashi F. A textbook of hydrometallurgy: Métallurgie extractive. E. Québec Ed. 1993.

 

  1. Singh H, Gupta C.K. Solvent Extraction in Production and Processing of Uranium and Thorium. Miner. Proc. Extr. Metall. Rev. 2000;21(1-5):307–349.

 

  1. Mishra R.K, Rout P.C, Sarangi K, Nathsarma K.C. A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923. Hydrometallurgy. 2010;104:298–303.

 

  1. Didi M.A, Villemin D, Abderrahim O, Azzouz A. Liquid–liquid extraction of thorium(IV) by fatty acids: a comparative study. J. Radioanal. Nucl. Chem. 2014;299:1191–1198.

 

  1. Gupta B, Malik P, Deep A. Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite. J. Radioanal. Nucl. Chem. 2002;251:451-456.

 

  1. Borai E.H, El-Din A.M.S, Afifi E.M.E, Aglan R.F, Abo-Aly M.M, Afr S. Subsequent Separation and Selective Extraction of Thorium (IV), Iron (III), Zirconium (IV) and Cerium (III (from Aqueous Sulfate Medium. South African Journal of Chemistry. 2016;69:148–156.

 

  1. Maiorov V.G, Nikolaev A.I, Kopkov V.K, Safonova L.A. Preparation of Thorium-Containing Concentrate from Perovskite. Radiochemistry. 2005;47:498-501.

 

  1. Shaeri M, Torab-Mostaedi M, Kelishami A.R. Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture. Journal of Radioanalytical Nuclear and Chemistry. 2015;303:2093-2099.

 

  1. Chung K.W, Yoon H.-S, Kim C.-J, Lee J.-Y, Jyothi R.K. Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. Journal of Industrial and Engineering Chemistry. 2019. Doi: https://doi.org/10.1016/j.jiec.2019.11.014.

 

  1. Ali A.M.I, El-Nadi Y.A, Daoud J.A, Aly H.F. Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. International Journal of Mineral Processing. 2007;81:217-223.

 

  1. Khanramaki F, Keshtkar A.R, Sohbatzadeh H, Pourmatin A, Akbari N. Separation of thorium from a real acidic leach liquor solution by solvent extraction method with Di(2-ethylhexyl) phosphoric acid as extractant and chemical precipitation with ammonia. Journal of Nuclear Science and Technology. 2023;105(3):17-27.

 

  1. Torkaman R, Moosavian M.A, Safdari J, Torab-Mostaedi M. Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2,4,4-trimethylpentyl) dithiophosphinic acid and di-(2-ethylhexyl) phosphoric acid. Annals of Nuclear Energy. 2013;62:284–290.

 

  1. Singh M, Sengupta A, Jayabun S, Ippili T. Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ion exchange and solvation mechanism. Journal of Radioanalytical Nuclear and Chemistry. 2017;311:195-208.

 

  1. Sahu K, Reddy M.L.P, Ramamohan T.R, Chakravortty V. Solvent extraction of uranium(VI) and thorium(IV) 14 from nitrate media by Cyanex 923. Radiochimica Acta. 2000;88:33-37.

 

  1. Khanramaki F, Shirani A.S, Safdari J, Torkaman R. Investigation of liquid extraction and thermodynamic studies on uranium from sulfate solution by Alamine 336 as an extractant. International Journal of Environmental Science and Technology. 2018;15:1467–1476