[1] Y. Iwasa, Stability and protection of superconducting magnets: A discussion, IEEE Trans. Appl. Supercond. 15(2) (2005) 1615-1620.
[2]
Z.M. Bai,
C.L. Wu,
J.X. Wang, Thermal Stability Analysis of High Temperature Superconducting Magnet Coils under Overcurrent Pulses,
physica C: Superconductivity 443(
1) (2006), 33-37.
[3] M. Wilson, Superconducting Magnets, Oxford University Press (1983) 68-71.
[4] A. Devred, Quench origins, AIP Conference Proceedings 249(2) (1992) 1262-1308.
[5] Y. Iwasa, HTS magnets: stability; protection; cryogenics; economics; current stability/protection activities at FBML, Cryogenics 43(3) (2003) 303-316.
[6] Y. Iwasa, Case Studies in Superconducting Magnets, 2th edition, Springer Science (2009).
[7] M. Breschi, L. Trevisani, M. Boselli, L. Bottura, A. Devred, P.L. Ribani, and F. Trillaud, Minimum quench energy and early quench development in NbTi superconducting strands, IEEE Trans. Appl. Supercond. 17(2) (2007) 2702-2705.
[8] W. Pi, X. Shi, J. Dong, and Y. Wang, Experimental Investigation on Quench Characteristics of NbTi/Bi2223 Hybrid Superconductor (2015).
[9] H. Bajas, M. Bajko, B. Bordini, L. Bottura, S. Izquierdo Bermudez, J. Feuvrier, A. Chiuchiolo, J. C. Perez, and G. Willering, Quench Analysis of High-Current-Density Nb3Sn Conductors in Racetrack Coil Configuration, IEEE Trans. Appl. Supercond. 25(3) (2015) 1-5.
[10] C.L. Wu, Z.M. Bai, J.H. Li, J.X. Wang, Normal-zone propagation velocities in Bi-2223/Ag superconducting multifilament tape, Physica C: Superconductivity 386 (2003) 166-169.
[11] E. Martinez, F. Lera, M. Martinez-Lopez, Y. Yang, S.I. Schlachter, P. Lezza, P. Kovac, Quench development and propagation in metal/MgB2 conductors, Supercond. Sci. Technol. 19(1) (2006) 143.
[12] T. Huang, E. Martínez, C. Friend, and Y. Yang, Quench characteristics of HTS conductors at low temperatures, IEEE Trans. Appl. Supercond. 18(2) (2008) 1317-1320.
[13] Z. Zhong, H.S. Ruiz, L. Lai, Z. Huang, W. Wang, T. Coombs, Experimental study of the normal zone propagation velocity in double-layer 2G-HTS wires by thermal and electrical methods, IEEE Trans. Appl. Supercond. 25(3) (2015) 1-5.
[14] M. Lebioda, J. Rymaszewski, Analysis of normal zone propagation in superconducting tapes initiated by thermal disturbances, Journal of Physics: Conference Series. 709 (2016) 012011.
[15] M. Abdollahi, N. Alinejad, J. Mahmoodi, N. Abdollahi, Study of Quench and Its Characterization on High Temperature Superconducting Bi-2223/Ag Tape, J. of Nucl Sci. and Tech. 79 (2017) 12-19 (In Persian).
[16] S.B. Kim, A. Ishiyama, H. Okada, S. Nomura, Introduction to High Temperature Superconductivity, Kluwer Academic Publishers (2002) 360-363.
[17] J.H. Joo, H. Sano, T. Kadota, S.B. Kim, S. Murase, Y. K. Kwon, Y.S. Jo, Study on quench protection method with regards to normal transition behavior for HTS coil. IEEE Trans. Appl. Supercond. 20(3) (2010) 2027-2030.
[18] A. Devred, Practical Low-Temperature Superconductors for Electromagnets,CERN–2004–006 12 July 2004 Accelerator Technology Department.
[19] J.H. Joo, H. Sano, T. Kadota, S.B. Kim, S. Murase, Y. K. Kwon, Y.S. Jo, Study on quench protection method with regards to normal transition behavior for HTS coil. IEEE Trans. Appl. Supercond. 20(3) (2010) 2027-2030.
[20] D. Colangelo, B. Dutoit, Impact of the Normal Zone Propagation Velocity of High-Temperature Superconducting Coated Conductors on Resistive Fault Current Limiters, IEEE Trans. Appl. Supercond. 25(2) (2015) 1-8.
[21] Zi. Melhem, High temperature superconductors (HTS) for energy applications. Elsevier (2011).
[22] R. Bellis and Y. Iwasa, Quench Propagation in High Tc Superconductors, Cryogenics 34(2) (1994) 129-144.