تأثیر زاویه تابش بر عملکرد زیست‌حسگر HIV-1 مبتنی بر بلور فوتونیکی یک‌بعدی

نوع مقاله : مقاله فنی

نویسندگان

دانشکده فیزیک، دانشگاه سمنان، صندوق پستی: 363-35195، سمنان - ایران

چکیده
شناسایی به موقع ویروس‌ها مثل ویروس نقص ایمنی انسانی (HIV-1) در نقطه مراقبت (POC) می‌تواند منجر به اقدامات پزشکی به موقع، درمان مناسب و کاهش نرخ رشد و گسترس بیماری شود. در این مقاله دو زیست‌حسگر HIV مبتنی بر بلور فوتونیکی یک‌بعدی کامل و حاوی لایه نقص برای تشخیص این ویروس پیشنهاد و مشخصه‌های اصلی این زیست‌حسگرها مثل حساسیت و ضریب کیفیت (ضریب Q) مورد بررسی قرار می‌گیرد. همچنین، تأثیر زاویه تابش بر عملکرد این دو حسگر نیز مورد ارزیابی قرار می‌گیرد. نتایج نشان می‌دهد که حساسیت زیست‌حسگر HIV بر پایه بلور فوتونیکی کامل مستقل از زاویه تابش است در حالی که ضریب Q این حسگر با افزایش زاویه تابش افزایش یافته و مقدار این کمیت تحت زاویه تابش 85 درجه تقریباً 14 برابر بزرگتر از تابش عمودی است. این در حالی است که حساسیت و ضریب Q زیست‌حسگر حاوی لایه نقص تابعی از زاویه تابش است و بیشینه مقدار این کمیت‌ها که در زوایای تابش 65 و 47 درجه اتفاق می‌افتد و به ترتیب برابر با 1056nm/RIU و 12683 می‌باشند. بنابراین، این زیست‌حسگر به عنوان گزینه مناسبی برای تشخیص ویروس HIV پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله English

Effect of irradiation angle on the performance of HIV-1 biosensor based on one-dimensional photonic crystal

نویسندگان English

M. Sovizi
M. Aliannezhadi
Faculty of Physics, Semnan University, P.O.Box: 35195-363, Semnan – Iran
چکیده English

The timely detection of human immunodeficiency virus (HIV) at the point of care (POC) enables prompt medical intervention, and appropriate treatment, and helps reduce the growth rate and spread of the disease. In this paper, two HIV-1 biosensors are proposed: one based on a perfect 1-D photonic crystal (PC) and the other based on a 1-D PC containing a defect layer. The main characteristics of these biosensors, including sensitivity and Q factor, are analyzed. Additionally, the effect of the irradiation angle on the performance of these two sensors is evaluated. The results show that the sensitivity of the HIV-1 biosensor based on the perfect photonic crystal is independent of the irradiation angle. Meanwhile, the Q factor of this sensor increases with an increase in the irradiation angle, with the Q factor at an angle of 85 degrees being nearly 14 times greater than that at normal incidence. On the other hand, both the sensitivity and Q factor of the biosensor containing the defect layer are dependent on the irradiation angle. The maximum values of these parameters occur at irradiation angles of 65 and 47 degrees, with corresponding values of 1056 nm/RIU and 12683, respectively. Therefore, the biosensor with the defect layer is recommended as a suitable candidate for HIV detection.

کلیدواژه‌ها English

Biosensor
Optical sensor
One-dimensional photonic crystals
Human immunodeficiency virus (HIV)
  1. Eksin E, Erdem A. Recent progress on optical biosensors developed for nucleic acid detection related to infectious viral diseases. Micromachines. 2023;14(2):295. https://doi.org/10.3390/mi14020295.

 

  1. Sovizi M, Aliannezhadi M. Highly sensitive asymmetric and symmetric cancer sensors with ultra-high-quality factor and resolution power. Scientific Reports. 2023;13(1):12251. https://doi.org/10.1038/s41598-023-39422-w.

 

  1. Aliannezhadi M, Mozaffari M.H, Amirjan F. Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing. Photonics and Nanostructures-Fundamentals and Applications. 2023;53:101108. https://doi.org/10.1016/j.photonics.2023.101108.

 

  1. Singh A.K, Mittal S, Das M, Saharia A, Tiwari M. Optical biosensors: A decade in review. Alexandria Engineering Journal. 2023;67:673-91. https://doi.org/10.1016/j.aej.2022.12.040.

 

  1. Fan J, Yuan L, Liu Q, Tong C, Wang W, Xiao F, Liu B, Liu X. An ultrasensitive and simple assay for the Hepatitis C virus using a reduced graphene oxide-assisted hybridization chain reaction. Analyst. 2019;144(13):3972-9. https://doi.org/10.1039/C9AN00179D.

 

  1. Jeong S, Kim D-M, An S-Y, Kim D.H, Kim D-E. Fluorometric detection of influenza viral RNA using graphene oxide. Analytical biochemistry. 2018;561:66-9. https://doi.org/10.1016/j.ab.2018. 09.015.

 

  1. Ming K, Kim J, Biondi M.J, Syed A, Chen K, Lam A, Ostrowski M, Rebbapragada A, Feld J.J, Chan W.C.W. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. Acs Nano. 2015;9(3):3060-74. https://doi.org/10.1021/nn5072792.

 

  1. Gao Y, Han Y, Wang C, Qiang L, Gao J, Wang Y, Liu H, Han L, Zhang Y. Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles. Analytica Chimica Acta. 2021;1154:338330. https://doi.org/10.1016/j.aca. 2021.338330.

 

  1. Liu Y, Huang C.Z. One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst. 2012;137(15):3434-6. https://doi.org/10.1039/ C2AN35167F.

 

  1. Boltovets P, Snopok B, Boyko V, Shevchenko T, Dyachenko N, Shirshov Y.M. Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. Journal of Virological Methods. 2004;121(1):101-6. https://doi.org/10.1016/j.jviromet.2004.06.019.

 

  1. Farzin L, Shamsipur M, Samandari L, Sheibani S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta. 2020;206:120201. https://doi.org/10.1016/ j.talanta.2019.120201.

 

  1. Lee J-H, Oh B-K, Choi J-W. Development of a HIV-1 virus detection system based on nanotechnology. Sensors. 2015;15(5):9915-27. https://doi.org/ 10.3390/s150509915.

 

  1. Sassi I, Ben El Hadj Rhouma M, Taya S.A, Gazzah M.H. The effects of the geometric and optical parameters on the performance of a grating perfect absorber sensor in near-infrared band. Optical and Quantum Electronics. 2024;56(6):992. https://doi.org/10.1007/s11082-024-06713-z.

 

  1. Shafiee H, Lidstone E.A, Jahangir M, Inci F, Hanhauser E, Henrich T.J, Kuritzkes D.R, Cunningham B.T, Demirci U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Scientific reports. 2014;4(1):4116. https://doi.org/10.1038/srep04116.

 

  1. Chi J, Wu D, Su M, Song Y. All-printed nanophotonic biochip for point-of-care testing of biomarkers. Sci Bull (Beijing). 2022;67(12):1191-3. https://10.1016/j.scib.2022.04.016.

 

  1. Rizvi A.S, Murtaza G, Zhang W, Xue M, Qiu L, Meng Z. Aptamer-linked photonic crystal hydrogel sensor for rapid point-of-care detection of human immuno-deficiency virus-1 (HIV-1). J. Pharm Biomed Anal. 2023;227:115104. https://doi.org/10.1016/j.jpba.2022.115104.

 

  1. Lugongolo M.Y, Ombinda-Lemboumba S, Maphanga C, Mthunzi-Kufa P. Editors. Detection of human immunodeficiency virus on a photonic crystal-based platform. ProcSPIE. 2023, https://doi.org/10.1117/12.2647726.

 

  1. Zhang X, Ma X, Dou F, Zhao P, Liu H. A biosensor based on metallic photonic crystals for the detection of specific bioreactions. Advanced functional materials. 2011;21(22):4219-27. https://doi.org/10.1002/adfm.201101366.

 

  1. Mozaffari M.H, Ebnali-Heidari M, Moravvej-Farshi M.K. A proposal for ultra-sensitive intensity-based biosensing via photonic crystal optofluidic biolaser. Laser Physics. 2019;29(3):035803. https://10.1088/1555-6611/ab0370.

 

  1. Mahalakshmi S, Nizar S.M, Caroline B.E, Sagadevan K, Loga K. Editors. Design and Investigation of Photonic Crystal Fiber for the Detection of HIV Virus. 2022 Smart Technologies, Communication and Robotics (STCR). IEEE. 2022. https://doi.org/10.1109/STCR55312.2022.10009132.

 

  1. Pang Y, Song H, Cheng W. Using optical trap to measure the refractive index of a single animal virus in culture fluid with high precision. Biomedical optics express. 2016;7(5):1672-89. https://doi.org/10.1364/BOE.7.001672.

 

  1. Pereira-Silva P, Meira D.I, Costa-Barbosa A, Costa D, Rodrigues M.S, Borges J, Machado A.V, Cavaleiro A, Sampaio P, Vaz F. Immobilization of streptavidin on a plasmonic Au-TiO2 thin film towards an LSPR biosensing platform. Nanomaterials. 2022;12(9):1526. https://doi.org/10.3390/nano12091526.

 

  1. Madadi Z, Abedi K, Darvish G, Khatir M. Dual-wavelength plasmonic perfect absorber suitable for refractive index sensing. Plasmonics. 2020;15:703-8. https://doi.org/10.1007/s11468-019-01045-1.

 

  1. Almawgani A.H, Suthar B, Bhargava A, Taya S.A, Daher M.G, Wu F, Colak I. Sucrose concentration detector based on a binary photonic crystal with a defect layer and two nanocomposite layers. Zeitschrift für Naturforschung A. 2022;77(9):909-19. https://doi.org/10.1515/zna-2022-0126.

 

  1. Kalyani V.L, Sharmab V.K. Design of 2D photonic crystal biosensor for HIV detection using Nano cavity and micro cavity based structure. https://doi.org/0.9790/9622-1305190196.