ایجاد تنوع ژنتیکی برای تحمل به شوری در ارقام محلی برنج با روش پرتوتابی گاما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مؤسسه تحقیقات برنج کشور، معاونت مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، صندوق پستی: 46191-91951، آمل - ایران

2 پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 1498-31465، کرج - ایران

چکیده
اصلاح به کمک جهش روشی کارآمد جهت تولید ارقام جدید برای کشت در شرایط طبیعی و تحت تنش از جمله شوری می‌باشد. جمعیتی از لاین‌های موتانت حاصل از پرتوتابی رقم‌های طارم محلی، حسنی و عنبربو توسط اشعه گاما طی 10 سال در شالیزارهای شور مازندران از نظر صفات زراعی ارتفاع بوته، زودرسی، عملکرد و اجزای عملکرد و تحمل نسبی به تنش شوری، بررسی و انتخاب شدند. میزان شوری خاک و آب آبیاری در سال‌ها و مکان‌های مختلف، به ترتیب بین 4 تا 11 و 2 تا 9 دسی‌زیمنس بر متر و شاخص تحمل به تنش شوری موتانت‌ها بین 3 تا 5 متغیر بود. 13 موتانت دارای شاخص حساسیت به تنش شوری پایین‌تری نسبت به ارقام والدینی با کد تحمل به تنش 5 بودند. بیشتر موتانت‌ها تعداد روز تا 50‌% گل‌دهی کمتری نسبت به والدین داشتند. تعداد روز از بذرپاشی تا 50% گل‌دهی در موتانت‌های منتخب (2310، 2212 و 133) بین 80 تا 90 روز بود. متوسط ارتفاع بوته در بین موتانت‌های انتخابی (M5-M7) در اراضی شور شالیزاری مازندران بین 130-110 سانتی‌متر بود. همه موتانت‌های انتخابی تعداد خوشه در کپه بیشتری نسبت به شاهد طارم محلی تولید کردند. متوسط عملکرد موتانت‎های برنج در مکان و سال‎های مختلف بین 3000 تا 4500 کیلوگرم در هکتار متغیر بود. موتانت‌های 2212 و 2310 بیشترین عملکرد را در مکان‎های بهنمیر و فریدونکنار داشتند که نسبت به شاهد طارم محلی، حداقل 35 درصد افزایش عملکرد نشان دادند. درصد آمیلوز موتانت‌ها بین 18 تا 23 متغیر بود. براساس نتایج، موتانت‌های 2212، 2310 و 133 برای اراضی شالیزاری شور یا لب‌شور انتخاب شدند.

کلیدواژه‌ها


عنوان مقاله English

Induction of genetic diversity for salinity tolerance in local varieties of rice using gamma irradiation

نویسندگان English

A. Fallah 1
L. Bagheri 2
A.R. Nabipour 1
E. Moghiseh 2
K. Mahdavi Mashaki 1
1 Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization, P.O.Box: 91951-46191, Amol - Iran
2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P.O.Box: 31465-1498, Karaj - Iran
چکیده English

Mutation breeding has proven to be efficient for developing new cultivars adapted to normal and stress conditions, including salinity. Mutant populations developed through gamma irradiation of Tarom Mahalli, Hassani, and Anbarboo local rice varieties were evaluated and screened for agronomic traits for 10 years in saline paddy fields of Mazandaran. These traits included plant height, early maturity, yield, yield components, and relative tolerance to salinity stress. The salinity levels of both soil and irrigation water varied between 4-11 and 2-9 dS/m, respectively, in different years and locations. The tolerance indices of the mutants were either 3 or 5, with 13 mutants showing lower stress sensitivity indices than their respective parents. Most mutants reached 50% flowering in fewer days than their parents, with selected mutants (2310, 2212, and 133) flowering between 80 and 90 days after sowing. The average plant height of selected mutants (M5-M7) in the saline paddy fields of Mazandaran ranged between 110-130 cm. All selected mutants produced a higher number of panicles per hill compared to Tarom Mahalli. The average yield of rice mutants varied between 3000 and 4500 kg/ha in different locations and years, with mutants 2212 and 2310 showing the highest yields in Bahnamir and Fereydoonkenar. These mutants exhibited at least a 35% increase in yield compared to Tarom Mahalli. The amylose percentage of the mutants ranged between 18-23%. Based on these results, mutants 2212, 2310, and 133 were selected for cultivation in paddy fields with saline or brackish water.

کلیدواژه‌ها English

Amylose
Mutation
Salinity
Rice mutant yield
  1. Fallah A. Evaluation of adaptability and stability of promising salinity tolerant rice mutant lines in regional yield trials. Publisher: Rice Research Institute of Iran. 2022 [In Persian].

 

  1. Nabipour A, Fallah A, Bagheri L. Application of induced mutation in rice breeding. Publisher: Rice Research Institute of Iran. 2019 [In Persian].

 

  1. Wi S.G, Chung B.Y, Kim J.H, Beak M.H, Lee J.W, Kim Y.S. Effect of gamma irradiation on morphological changes and biological responses in plants. Micron. 2007;38(6):553-564. DOI: 10.1016/j.micron.2006.11.002.

 

  1. Baadu R, Chong K.P, Gansau J.A, Mohamed Zin M.R, Dayou J. A systematic review on physical mutagens in rice breeding in Southeast Asia. Peer J. 2023 Oct 18;11:e15682. DOI: 10.7717/peerj.15682. PMID: 37868055; PMCID: PMC10590103.

 

  1. Hwang S.G, Chapagain S, Lee J.W, Han A.R, Jang C.S. Genomewide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant. Plant Physiol. Biochem. 2017;120:40–51. https://pubmed.ncbi.nlm.nih.gov/ 28987861.

 

  1. Song J.Y, Kim D.S, Lee M.C, Lee K.J, Kim J.B, Kim S.H, Ha B.K. Physiological characterization of gamma-ray induced salt tolerant rice mutants. Aust. J. Crop Sci. 2012;6:421–429.

 

  1. Kong X, Kasapis S, Bao J. Viscoelastic properties of starches and flours from two novel rice mutants induced by gamma irradiation. LWT – Food Sci. Technol. 2015;60:578–582. DOI: 10.1016/j.lwt.2014. 08.034.

 

  1. Majd F, Rahimi M, Rezazadeh M. Evolving of mutant lines resistant to lodging, blast, and high yield in rice by induce mutation using Gamma ray (physical mutagen). J. Nucl. Sci. Tech. 2000;26:37-43.

 

  1. Ebadi A.A, Hallajiyan M.T. Kian, a new variety of drought tolerant rice. Publisher: Rice Research Institute of Iran. 2022 [In Persian].

 

  1. Nematzadeh G.A, Olaladi M. Growing instruction for Tarom Roshan, a new high yielding aromatic rice cultivar. 2019. www.gabit.sanru.ac.ir.

 

  1. Kato H, Li F, Shimizu A. The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants. 2020;9(8):1004.

 

  1. Behpouri A, Kheradnam M, Bizhanzadeh E. Evaluation of genetic variation in rice (Oryza sativa L.) genotypes using some agronomic and morphological traits. J. Agric. Sci. 2007;12(4):799-809 [In Persian].

 

  1. Zeng L, Shanon M.C. Effects of Salinity on grain yield and yield components of rice and different seeding densities. Agron. J. 2000;92:423–427.

 

  1. Naserian Khiabani B, Ahari Mostafavi H, Fathollahi H, Vedadi S, Mosavi Shalmani M.A. Suitable gamma ray dose determination in order to induce genetic variation in Kaboli Chickpea (Cicer Arietinum L). J. Nucl. Sci. Tech. 2008;42:19-25.

 

  1. Bagheri L, Fallah A. Producing of tolerant cultivars to salinity stress in rice (Oryza sativa L.) using mutation and biotechnology. Publisher: Rice Research Institute of Iran. 2015 [In Persian].

 

  1. Abdelnour-Esquivel A, Perez J, Rojas M, Vargas W, Gatica-Arias A. Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cell Dev. Biol. Plant. 2020;56:88–97.

 

  1. IRRI. Standard Evaluation System for Rice. International Rice Research Institute. 2013 November.

 

  1. Rathore A, Parsad R, Gupta V.K. Computer aided construction and Analysis of augmented Designs. J. Indian Soc. Agric. Stat. 2004;57:320-344.

 

  1. SAS Institute. The SAS system for Windows. Release 9.4. SAS Inst., Cary, NC. USA. 2013.

 

  1. Fallah A, Bagheri L, Nabipour A, Mogheseh A. Comparison agronomical characteristics, yield and grain quality of rice mutant's tolerance to salinity. J. Agron. Plant Breed. 2018;14(2):79-87.

 

  1. Juliano B.O. A Simplified assay for milled rice amylose. Cereal Sci. Today. 1971;16:334-338, 340, 360.

 

  1. Sabouri H, Rezai A, Moumeni A. Evaluation of Salt Tolerance in Iranian landrace and improved rice cultivars. Journal of Crop Production and Processing. 2008;12(45):47-63. URL: http://jcpp.iut.ac.ir/article-1-899-fa.html.

 

  1. Yazdisamadi B, Rezaei A.R, Valizadeh M. Statistical designs in agricultural sciences. Publisher: Tehran University. 2013 [In Persian].

 

  1. Babaei A, Nematzadeh G.H, Hashemi H. An evaluation of genetic differentiation in rice mutants using semi-random markers and morphological characteristics. Australian Journal of Crop Science. 2011;5(13):1715-1722.

 

  1. Esfahani M, Fotookian M.H. Induction of earliness and awnless mutants in rice (Oryza sativa L.) Domsiah cultivar. Iranian Journal of Agricultural Sciences. 2002;4(2):95-106 [In Persian].

 

  1. Ahloowalia B.S, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135:187-204. https://doi.org/10. 1023/B:EUPH.0000014914.85465.4f.

 

  1. Alizadeh M.A, Eesvand H.R. Rice in Egypt. Publisher: Ministry of Agriculture. 2005 [In Persian].

 

  1. Azizi H, Aalami A, Esfahani M, Ebadi A.A, Evaluation of genetic diversity in some of Iranian and foreign rice genetic resources based on morphological traits. Applied Research in Field Crops. 2018;31(1):1-21. DOI: 10.22092/aj.2018.101495.1018.

 

  1. Fallah A, Farahmanfar E, Moradi F. Effect of salt stress on some morphophysiological characters of two rice cultivars during different growth stages at green- house. Agronomy Journal (Pajouhesh & Sazandegi). 2015;107:175-182. DOI: 10.22092/aj.2015.105720.

 

  1. Saleethong P, Sanitchon J, Kong-Ngern K, Theerakulpisut P. Effects of exogenous spermidine (spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp.‘indica’) grains under salt stress. Australian Journal of Crop Science. 2013;7(9):1293-1301. 20.1001.1.22518517. 1387.12.45.5.7.

 

  1. Haghighi Hasanalideh A.R, Allahgholipour M. Rice quality: related properties and effective factors. Iranian Journal of Crop Sciences. 2022;24(3):196-220. URL: http://agrobreedjournal.ir/article-1-1204-fa.html. [In Persian].

 

  1. Rao P.S, Mishra B, Gupta S.R. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Science. 2013;20(4):284–291. https://doi.org/10.1016/S1672-6308(13)60136-5.