[1] M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals, Adv. Colloid Interfac. 166 (2011) 36-59.
[2] D.A. Carvajal, Y.P. Katsenovich, L.E. Lagos, The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain, Chem. Geol. 330-331 (2012) 51-59.
[3] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195–226.
[4] K. Vijayaraghavan, Y.-S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv. 26 (2008) 266-291.
[5] S. Madala, S.K. Nadavala, S. Vudagandla, V.M. Boddu, K. Abburi, Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent, Arab. J. Chem. 10 (2013) S1883-S1893.
[6] F. Colak, N. Atarb, D. Yazıcıoglu, A. Olgun, Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance, Chem. Eng. J. 173 (2011) 422-428.
[7] A.R. Keshtkar, F. Kafshgari, Application of Ca-Pretreated Brown Alga for Heavy Metals Removal from Esfahan Uranium Conversion Facility (UCF) Wastewater, J. of Nuclear Sci. and Tech. 67 (2014) 22-30 (In Persian).
[8] S. Sana, R. Roostaazad, S. Yaghmaei, Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide, IJCCE. 34(1) (2015) 65-74.
[9] A. Keshtkar, M.M. Montazer Rahmati, N. Khodapanah, Application of Two-Parameter and Three-Parameter Isotherm Models at Uranium Biosorption by Baker's Yeast, J. of Nuclear Sci. and Tech. 50 (2010) 1-8 (In Persian).
[10] M.L. Merroun, S. Selenska-Pobell, Bacterial interactions with uranium: An environmental perspective, J. Contam. Hydrol. 102 (2008) 285–295.
[11] D. Park, Y.-S. Yun, J.M. Park, The Past, Present, and Future Trends of Biosorption, Biotechnol. Bioproc. E. 15 (2010) 86-102.
[12] P. Sar, S.K. Kazy, S.F. D’Souza, Radionuclide remediation using a bacterial biosorbent, Int. Biodeter. Biodegr. 54 (2004) 193-202.
[13] Z.R. Yelebe, B.Z. Yelebe, R.J. Samuel, Design of fixed bed column for the removal of metal contaminations from industrial wastewater, J. Eng. Appl. Sci. 5(2) (2013) 68-77.
[14] S.C.S. Martins, C.M. Martins, L.M.C.G. Fiúza, S.T. Santaella, Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater, Afr. J. Biotechnol. 12(28) (2013) 4412-4418.
[15] G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods, Bioresource Technol. 143 (2013) 490-498.
[16] J. Wang, C. Chen, Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides, Bioresource Technol. 160 (2014) 129-141.
[17] J. Choi, J.Y. Lee, J.-S. Yang, Biosorption of heavy metals and uranium by starfish and Pseudomonas putida, J. Hazard. Mater. 161 (2009) 157-162.
[18] W.S. Wan Ngah, M.A.K.M. Hanafiah, S.S. Yong, Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies, Colloid. Surfaces B 65 (2008) 18-24.
[19] N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal ions removal from aqueous solutions: a review of recent studies, IJLRST. 3(1) (2014) 24-42.
[20] W.S. Wan Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies, J. Environ. Manage. 91 (2010) 958-969.
[21] G.H. Mirzabe, A.R. Keshtkar, Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent, J. Ind. Eng. Chem. 26 (2015) 277-285.
[22] Y.-g. LIU, T. LIAO, Z.-b. HE, T.-t. LI, H. WANG, X.-j. HU, Y.-m. GUO, Y. HE, Biosorption of copper(II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads, T. Nonferr. Metal. Soc. 23 (2013) 1804-1814.
[23] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon, Spectrochim. Acta A 122 (2014) 223–231.
[24] P. Kotrba, M. Mackova, T. Macek, Microbial Biosorption of Metals, Springer Science+Business Media B.V., 2011.
[25] D. Humelnicu, M.V. Dinu, E.S. Dragan, Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents, J. Hazard. Mater. 185 (2011) 447-455.
[26] F. Wang, L. Tan, Q. Liu, R. Li, Z. Li, H. Zhang, S. Hu, L. Liu, J. Wang, Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini, J. Environ. Radioactiv. 150 (2015) 93-98.
[27] J.-s. Wang, X.-j. Hu, J. Wang, Z.-l. Bao, S.-b. Xie, J.-h. Yang, The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus, Biochem. Eng. J. 51 (2010) 19–23.
[28] K. Akhtar, M.W. Akhtar, A.M. Khalid, Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum, Water Res. 41 (2007) 1366-1378.
[29] R.B. Sashidhar, S. Kalaignana Selvi, V.T.P. Vinod, T. Kosuri, D. Raju, R. Karuna, Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents, J. Environ. Radioactiv. 148 (2015) 33-41.
[30] C. Pang, Y.-H. Liu, X.-H. Cao, M. Li, G.-L. Huang, R. Hua, C.-X. Wang, Y.-T. Liu, X.-F. An, Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum, Chem. Eng. J. 170 (2011) 1-6.
[31] A.R. Keshtkar, M. Mohammadi, M.A. Moosavian, Equilibrium biosorption studies of wastewater U(VI), Cu(II) and Ni(II) by the brown alga Cystoseira indica in single, binary and ternary metal systems, J. Radioanal. Nucl. Ch. 303 (2015) 363–376.