نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، صندوق پستی: 165، ارومیه-ایران

2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه تربیت مدرس، صندوق پستی: 336-14115، تهران-ایران

3 بخش تحقیقات بیولوژی خاک، مؤسسه تحقیقات خاک و آب، صندوق پستی: 6185-14155، تهران-ایران

4 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران-ایران

چکیده

این تحقیق به منظور بررسی پتانسیل سیدروفور سویه‌های بومی سودوموناس‌های فلورسنت در جذب روی نشاندار (65Zn) در سال 1384 انجام گرفته است. برای این منظور 201 جدایه از گونه‌های Pseudomonas putida، P. fluorescens و P. aeruginosa از مزارع گندم مناطق مختلف ایران جداسازی شدند. توان تولید سیدروفور سویه‌ها با استفاده از محیط جامد حاوی کرم آزورل اس (CAS-agar) مورد ارزیابی قرار گرفت. به منظور استخراج سیدروفور، سویه­های برتر تولید کننده سیدروفور از هر گونه انتخاب و در محیط استاندارد سوکسینات (SSM) به مدت 72 ساعت در دمای  Cْ28 رشد داده شدند. سپس باکتری‌ها با سانتریفوژ 10000 دور در دقیقه به مدت 20 دقیقه، ته‌نشین شدند و محلول رویی پس از صاف شدن با صافی غشائی (0.22 μ) ، به عنوان منبع سیدروفور در آزمایش­ها استفاده شد. ارزیابی جذب و انتقال روی با استفاده از کمپلکس سیدروفور باکتری‌ها با 65Zn(Zn-siderophore) بصورت آزمایش فاکتوریل در قالب طرح بلوک‌های کاملاً تصادفی با 3 تکرار و در مقایسه با سیدروفور استاندارد دسفرواکسامین (DFOB) انجام گرفت. این آزمایش در شرایط هیدروپونیک بر روی دو رقم گندم Triticum aestivum L.)) کارا از نظر تولید فیتوسیدروفورها (طبسی) و غیرکارا (یاواروس) در آزمایشگاه بیولوژی مؤسسه تحقیقات خاک و آب انجام گرفت. نتایج حاصل از این بررسی نشان داد که در میان سیدروفور گونه­های مورد مطالعه، کمپلکس سیدروفور P. putida بالاترین پتانسیل را در قابلیت جذب 65Zn برای گندم داشت و حتی با میزان جذب شده این عنصر توسط سیدروفور استاندارد برابری می‌کرد. میزان جذب 65Zn توسط گیاه ازکمپلکس این گونه در مقایسه با سیدروفور استاندارد (DFOB)، به 83 درصد رسید. اثر اصلی باکتری (نوع سیدروفور) در مقدار جذب روی نشان‌دار معنی‌دار بود که ممکن است ناشی از وجود اختلاف در ساختار شیمیایی سیدروفورها باشد. مقدار روی انتقال­یافته به اندامهای هوایی هر دو رقم گندم از کمپلکس سیدروفور
P. putida با 65Zn بیشتر از کمپلکس سیدروفور دو گونه دیگر سودوموناس بود. همچنین نتایج نشان داد که مقدار 65Zn بیشتری در ریشه رقم یاواروس نسبت به رقم طبسی تجمع یافته و درصد کمی از آن به اندامهای هوایی انتقال یافت. توان کمپلکس سیدروفور سویه­ها در تأمین Zn برای گندم به صورت Sid-DFOB> Sid-P. putida> Sid-P. fluorescens> Sid-P. aeruginosa کاهش یافت. با عنایت به توانمندی P. putida در تولید کمپلکس سیدروفور- Zn با بیشترین قابلیت جذب برای گندم، این گونه را می‌توان گونه تولید کننده زینکوفور (Zincophore) نیز نامگذاری نمود.

کلیدواژه‌ها

عنوان مقاله [English]

The Role of Fluorescent Pseudomonad’s Siderophore on Zn Absorption in Wheat by Using 65Zn

نویسندگان [English]

  • M.H Rasouli Sadaghiani 1
  • M.J Malakouti 2
  • K Khavazi 3
  • M Ghannadi Maragheh 4

چکیده [English]

The objective of this investigation was to determine the potentials of some indigenous fluorescent Pseudomonads for siderophore production and their effects on 65Zn absorption in 2005. For this purpose, 201 strains of Pseudomonas putida, P. fluorescens, and P. aeruginosa were isolated from different locations representing rhizosphere of wheat (Triticum aestivum L.). The potentials of these strains for siderophore production were evaluated by chrome azorel-S assay (CAS blue agar) through color change. High siderophore producing super-strains were selected for the extraction of siderophores. These isolates were grown in SSM (standard succinate medium) for 72 hrs at 28°C. The bacterial cells  
were removed by centrifugation (10000 g for 20 minutes) and the supernatant was filtered through filter membrane (0.22 μ) and used as the source of siderophore source. The evaluations of Zn uptake and translocation were carried out with the complexes of bacterial siderophores and 65Zn compared with the standard siderophore Desferrioxamine in a randomized complete block design with three replications. This experiment was conducted on two wheat genotypes different in Zn-efficiency under hydroponic condition. The results revealed that among the three most effective siderophores producing strains considered, the P. putida produced a siderophore complex that showed efficiencies of 83% compared with the standard siderophore (DFOB) in the uptake of Zn and was statistically in the same group as the control. The effect of bacterial siderophores in the uptake of labeled 65Zn by wheat was significant, indicating that the chemical structures of the siderophores from different strains were different. The effects of wheat variety on 65Zn translocation to shoots was also significant, where the efficient Tabasi variety contained 46% more Zn in shoots than the inefficient Yavarous variety. It was concluded that the siderophore complex from P. putida was the most effective in translocation Zn to shoots, particularly in efficient Tabasi genotype. Siderophore effectiveness in Zn availability decreased in the order of Sid-DFOB> Sid-P. putida>Sid-P. fluorescens> Sid-P. aeruginosa. Due to the availability of P. putida in absorbing Zn, the siderophores of this group of bacteria can be named as zincophore.
 

کلیدواژه‌ها [English]

  • Plant Growth-Promoting Rhizobacteria (PGPR)
  • Fluorescent Pseudomonads
  • 65Zn
  • Siderophore and Zincophore
  1. 1.    M. Sillanpaa “Micronutrients and the nutrient status of soils: A global study,” FAO Soils Bulletin No. 48. Food and Agriculture Organization of the United Nations, Rome. pp. 75-82 (1982).

 

  1. 2.    R. M. Welch, W. H. Allaway, W. A. House, and J. Kubota “Geographic distribution of trace element problems,” In: Micronutrients in Agriculture. J.J. Mortvedt, F.R. Cox, L.M. Shuman, and R.M. Welch (eds.). SSSA Book Series No.4. Madison, WI. pp. 31-57 (1991).

 

  1. 3.    م. ج.  ملکوتی  و  م. ح.  داودی ”روی در کشاورزی- عنصری فراموش شده در چرخه حیات گیاه، دام و انسان،“  انتسارات سنا. معاونت امور باغبانی، وزارت جهاد کشاورزی. 209 صفحه. تهران، ایران (1381)  .                            
  2. 4.    M. J. Malakouti “The role of zinc in plant growth and enhancing animal and human health,” Regional Expert Consultation in Plant, Animal and Human Nutrition: Interaction and Impact, Damascus, Syria. (2003).

 

  1. 5.    M. J. Malakouti, A. Malakouti, I. Bybordi and E Khamesi “Zinc (Zn) is the neglected elements in the life cycle of plant, animal and human health (9th edition),” Technical bulletin No. 475. Sana Publication Co., Ministry of Jihad-e-Agriculture. Tehran, Iran. (2006).

 

  1. 6.    م. ج. ملکوتی ”تغذیه متعادل گندم راهی به سوی خودکفایی در کشور و تأمین سلامت جامعه (مجموعه مقالات)،“ 544 صفحه. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، وزارت کشاورزی. کرج. ایران (1379).                                                                                                                
  2. 7.    B. J. Alloway “Zinc in soils and crops nutrition,” International Zinc Association (IZA). Brussels, Belgium (2004).

 

  1. 8.    S. Sonmez and M. Kaplan “Comparison of various analysis methods for determination of iron chlorosis in apple trees,” J. plant Nutr. 27: 2007-2018 (2004).
  2. 9.    I. Cakmak, A. Yılmaz, M. Kalaycı, H. Ekiz, B. Torun, B. Erenoglu, and H. J. Braun “Zinc deficiency as a critical problem in wheat production in Central Anatolia”. Plant and Soil, 180: 165-172 (1996).

 

  1. 10.              م.ج.  ملکوتی، م.م.  طهرانی ”کشاورزی پایدار و افزایش عملکرد با بهینه‌سازی مصرف کود در ایران  (چاپ سوم با بازنگری کامل،“ انتشارات سنا، تهران، ایران  (1384).                                                                                     

 

  1. 11.              K. Kitagishi, H. Obata, and T. Kondo “Effect of zinc defciency on 80S ribosome content of meristematic tissues of rice plant,” Soil Sci. Plant Nutr. 33:423-430 (1987). I. Cakmak, H. Marschner, and F. Bangert “Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3- acetic acid and other phytohormones in bean

 

  1. 12.              Phaseolus vulgaris L.)”. J. Exp. Bot. 40:405-412 (1989).

 

  1. 13.              R. Becker, E. Fritz, and R. Manteuffel “Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol,” 108: 269–275 ( 1995).

 

  1. 14.              H. Boukhalfa and A. L. Crumbliss “Chemical aspects of siderophore mediated iron transport,” Biometals 15: 325-339 (2002).

 

  1. 15.              م.ح. رسولی صدقیانی ”بررسی نقش فیتوسیدروفورها و سودوموناس‌های تولید کننده سیدروفور در تأمین آهن و روی مورد نیاز ارقام گندم،“ پایان‌نامه دکتری گروه خاکشناسی دانشکده کشاورزی دانشگاه تربیت مدرس. تهران، ایران  (1384).                                                                                                        

 

  1. 16.              م.ح. رسولی صدقیانی، ک. خاوازی، م.ج. ملکوتی ”باکتری‌های تولید کننده سیدروفور و امکان تأمین آهن و روی مورد نیاز گیاهان،“ نشریه فنی شماره 427، مؤسسه تحقیقات خاک و آب، تهران، ایران  (1384).           
  2. 17.              J. M. Meyer and M. A. Abdallah “The fluorscent pigment of Pseudomonas fluorescens: biosynthsis, purification and physicochemical properties,” J. Gen. Microbiol. 107: 319-328 (1978).

 

 

  1. 18.              L. L. Barton, and B. C. Hemming “Iron chelation in plants and soil microorganisms,” Academic Press, USA (1993).

 

 

 
 

29

 

 

 


  1. 19.              G. R. Cline, C. P. Reid, P. E. Powell and P. J. Szaniszlo “Effects of a hydroxamate  siderophore on iron absorption by sunflower and sorghum,” Plant Physiol., 76: 36–39 (1984).

 

  1. 20.              V. Romheld and H. Marschner “Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores,” Plant and Soil, 123: 147-153 (1990).
  2. 21.              A. Walter, V. Romheld, H. Marschner, and D. E. Crowley “Iron nutrition of cucumber and maize: Effect of Pseudomonas putida YC3 and its siderophore,” Soil Biol. Biochem.., 26: 1023-1031 (1994b).

 

  1. 22.              H. Marschner “Mineral nutrition of higher plants,” Academic Press, London. (1995).

 

  1. 23.              Z. Yehuda, M. Shenker, V. Romheld, H. Marschner, Y. Hadar, and Y. Chen “The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants,” Plant Physiol., 112: 1273-1280 (1996).

 

  1. 24.              A. Sharma, B. N. Johri, A. K. Sharma and B. R. Glick “Plant growth-promoting bacterium Pseudomonas sp. Strain GRP3 influences iron acquisition in Mung bean,” Soil Biol. Biochem., 35: 887-894 (2003).

 

  1. 25.              N. W. Schaad “Laboratory guide for identification of plant phathogenic bacteria,” 3rd Ed. APS Press (2001).

 

  1. 26.              D. B. Alexander and D. A. Zuberer “Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria,” Biol. Fertil. Soils, 12: 39-45 (1991).

 

  1. 27.              I. Tolay, B. Erenoglu, V. Romheld, H. J. Braun and I. Cakmak “Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies,” J. Exp. Bot., 52: 1093-1099 (2001).

 

  1. 28.              G. A. Johnson., A. Lopez and N. V. Foster “Reduction and transport of Fe from siderophores,” Plant and Soil, 241: 27–33 (2002).

 

  1. 29.              B. Schwyn, and J. B. Neilands “Universal chemical assay for the detection and determination of siderophores. Anal,” Biochem, 160: 47-56 (1987).

 

  1. 30.              A. M. F. Milagres, A. Machuca, and D. Napoleao “Detection of siderophore production from several fungi and bacteria by a modificaction of chrome azurol S (CAS) agar plate assay,” J. Microbiol. Methods, 37: 1-6 (1999).

 

  1. 31.              D. E., Crowley, C. P. P. Reid, and P. J. Szaniszlo “Utilization of microbial siderophores in iron acquisition by oat,” Plant Physiol., 87: 680-685 (1988).

 

  1. 32.  M. Shenker, Y. Hader, and Y. Chen “Kinetics of iron complexing and exchange in solutions by rhizoferrin, a fungal siderophore,” Soil Sci. Soc. Am. J., 63: 1681-1687 (1999).