نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه فرآوری مواد معدنی، دانشکده فنی مهندسی، دانشگاه تربیت مدرس، صندوق پستی: 143-14115، تهران ـ ایران

چکیده

نانوذرات ابرپارامغناطیسی منیتیت (4O3Fe) درجا پوشش داده شده با پلی‌اتیلن گلیکول با استفاده از روش هم‌رسوبی شیمیایی به وسیله-ی سدیم هیدروکسید، در محلول‌های اسیدی فروکلرید چهار آبه (O2H4.2FeCl)، و فریک کلرید شش آبه (O2H6.3FeCl)ی محتوی پلی‌اتیلن گلیکول ساخته شدند. شرایط بهینه‌ی رسوب‌گیری نانوذرات منیتیت پوشش داده شده با پلی‌اتیلن گلیکول تعیین شد. نتایج نشان داد که قدرت اسیدی محیط رسوب‌گیری، غلظت سدیم هیدروکسید و مقدار پلی‌مر موجود در محیط تأثیر مهمی بر روی اندازه و ساختار نانوذرات دارند. اندازه و توزیع اندازه، ساختار، و پوشش نانوذرات، به ترتیب، به وسیله‌ی میکروسکوپی الکترون عبوری (TEM) و پراش‌سنجی پرتو ایکس (XRD)، طیف‌سنجی تبدیل فوریه‌ی زیرقرمز (FT-IR)، و تجزیه‌ی گرماوزنی (TGA) مشخص شد. اندازه‌ی نانوذرات لخت، در گستره‌ی 8 تا 28 نانومتر متغییر بود که پس از پوشش‌دهی تغییر قابل توجهی نکرد. بالاخره این‌که اصلاح نانوذرات، با هدف استفاده از آن‌ها به عنوان حاملی جدید برای بازیابی و حذف یون‌های فلزی اورانیم (VI) و توریم (IV) از محلول‌های آبی با مخلوط نمودن نانوذرات با سیانکس272 به مدت تقریباً 1 ساعت انجام و نسبت وزنی مناسب سیانکس به نانوذرات برابر 5/1:7 درنظر گرفته شد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis and characterization of Cyanex 272-modified supeparamagnetic magnetite nanoparticles

نویسندگان [English]

  • Saeid Alamdarmilani 1
  • Ahmad Khodadidarban 2
  • Afshin Shahbazi 2

1

2

چکیده [English]

The in-situ polyethylene glycol coated superparamagnetic magnetite (Fe3O4) nanoparticles (SPMNPs) were prepared by a co-precipitation method from the acidic solutions of FeCl2.4H2O and FeCl3.6H2O, containing polyethylene glycol (PEG), using aqueous solution of  NaOH. The optimum coditions of the precipitation of  polymer coated magnetic nanoparticles were determinned.  It was found that the concentration of acid, sodium hydroxid, and polyethylene glycol influenced the size and structure of nanoparticles. The sizes and the size distribution, structure, and coating of  the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD), Fourier transform infrared spectrometry (FT-IR) and thermogravimetry analysis (TGA) techniques, respectively. The size of the uncoated nanoparticles was varied in the range of  8-28 nm and after the coating it did not change significantly. Finally, the modification of the particles was carried out simply by mixing the modifiere (Cyanex 272) with nanoparticles powder for a time duration of approximately one hour. The nanoparticle that was treated by Cyanex 272/SPMNPs of weight ratio of 7.5:1 possessed better characteristics for Uranium(VI) and Thorium(IV) recovery from aqueous solutions.

کلیدواژه‌ها [English]

  • Superparamagnetic nanoparticles
  • Magnetite
  • Synthesis and characterization
  • Polyethlen glycol
  • Cyanex 272
[1] D.D. Awschalom, D.P. DiVincenzo, Complex dynamics of mesoscopic mag-nets, Phys. Today (1995) 43-48.
[2] R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O’ Horo, B.N. Ganguly, V. Mehrotra, M.W. Russel, D.R. Huffman, Matrix-mediated synthesis of nanocrystalline ggr-Fe2O3: A New Optically Transparent Magnetic Material, Science, 257 (1992) 219-223.
[3] R.D. McMicheal, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, R.E. Watson, Magnetocaloric effect in superparamagnets, J. Magn Mater, 111 (1992) 29–33.
[4] L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater. 9 (1997) 1302-1317.
[5] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, Journal of the Iranian Chemical Society, 7 (2010) 1-37.
[6] M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, J. Magnetism and Magnetic Materials, 279 (2004) 210-217.
[7] L.C.B. Stopa, M. Yamaura, Uranium removal by chitosan impregnated with magnetite, nanoparticles: adsorption and desorption, International Nuclear Atlantic Conference-INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2 (2009).
[8] A.P.G. Yamamura, M. Yamaura, C.H. Costa, Magnetic biosorbent for removal of uranyl ions, International Nuclear Atlantic Conference-INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2 (2009).
[9] Fathi Habashi, A Texbook of Hydrometallurgy, Department of mining and metallurgy, Laval university, Quebec city, Canada, )1993 ) 430-440.
[10] L. Nunez, M.D. Kaminski, C. Bradley, A.B. Buchholz, Magnetically Assisted Chemical Separation (MACS) Process: Preparation and laboratory (Ed.), Chemical Technology Division, Argonne (1995).
[11] P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles: Langmuir, 15 (1999) 1945-1950.
[12] P.C. Marais, B.M. Lacava, A.F. Bakuzis, Atomic force microscopy and magnetization investigation of a water-based magnetic fluid: Journal of Magnetism and Magnetic Materials, 226 (2001) 1899-1900.
[13] A. Navrotsky, Nanomaterials in the environment, agriculture, and technology (NEAT), J. Nanoparticle Research, 2 (2000) 321-323.
[14] P. Fulmer, M. Manivel Raja, Chemical synthesis, processing and characterization of nanostructured fe-B for the magnetically assisted chemical separation of hazardous waste: Chemistry of Materials, 13 (2001) 2160-2168.
[15] M.H. Liao, D.H. Chen, Preparation and characterization of a novel magnetic nano-adsorbent: Journal of Materials Chemistry, 12 (2002) 3654-3659.
[16] D. Bahadur, J. Giri, B. Nayak, Processing, properties and some novel applications of magnetic nanoparticles, Pramana, 65 (2005) 663-679.
[17] L. Zeng, R. Hu, Z. Wu, Preparation and characterization of amino-coated maghemite nanoparticles: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 2010.
[18] Q. Hongzhang, Y. Biao, L. Chengkui, Preparation and magnetic properties of magnetite nanoparticles by sol-gel method: Nanoelectronics Conference (INEC) (2010) 888-889.
[19] R.Y. Hong, J.H. Li, H.Z. Li, J. Ding, Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of Magnetite fluids: Journal of Magnetism and Magnetic Materials, 320 (2008) 1605-1614.
[20] Y. Zhao, Z. Qiu, J. Huang, Preparation and Analysis of Fe3O4 Magnetic nanoparticles used as targeted-drug carriers supported by the technology project of jiangxi provincial education department and Jiangi provincial Science department: Chinese Journal of Chemical Engineering, 16 (2008) 451-455.
[21] M. Chastellain, A. Petri, H. Hofmann, Particle size investigations on a multi-step synthesis of PVA coated superparamagnetic nanoparticles, J. Colloid Interface Sci. 278 (2004) 353-360.
[22] A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, Magnetic nano-and microparticles for metal removal and environmental applications: a review, Comptes Rendus Chimie, 8 (2005) 963-970.
[23] C.B. Bauer, R.D. Rogers, L. Nunez, M.D. Ziermer, T.T. Pleune, G.F. Vandergrift, Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation, ANL-95/26, November (1995).
[24] P.S. Shah, T. Hanrath, K.P. Johnston, B.A. Korgel, Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids, J. Phys. Chem. B, 108 (2004) 9574-9587.
[25] L.E. Euliss, S.G. Grancharov, S. O’Brien, T.J. Deming, G.D. Stucky, C.B. Murray, G.A. Held, Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media, Nano Lett., 3 (2003) 1489-1493.
[26] R. Hong, N.O. Fischer, T. Emrick, V.M. Rotello, Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications, Chem. Mater. 17 (2005) 4617-4621.
[27] Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids, Langmuir, 17 (2001) 7907-7911.
[28] M. Kim, Y. Chen, Y. Liu, X. Peng, High-quality Fe3O4 dendron–nanocrystals dispersible in both organic and aqueous solutions, Adv. Mater. 17 (2005) 1429-1432.
[29] Y. Kobayashi, M. Horie, M. Konno, B. Rodriguez-Gonzalez, L.M. Liz-Marzan, Preparation and Properties of Silica-Coated Cobalt Nanoparticles, J. Phys. Chem. B, 107 (2003) 7420.
[30] A.H. Lu, W. Li, N. Matoussevitch, B. Spliethoff, H. Bonnemann, F. Schvth, Synthesis of carbon coated silica nanowires more, Chem. Commun. (2005) 98.
[31] N.S. Sobal, M. Hilgendorff, H. Moehwald, M. Giersig, M. Spasova, T. Radetic, M. Farle, Synthesis and structure of colloidal bimetallic nanocrystals: The non-alloying system Ag/Co, Nano Lett. 2 (2002) 62.
[32] Q. Liu, Z. Xu, J.A. Finch, R. Egerton, A novel two-step silica coating process for engineering magnetic nanocomposites, Chem. Materials, 10 (1998) 3936-3940.
[33] J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E.E. Carpenter, C.J. O'Connor, Gold-coated Iron (Fe@Au) Nnanoparticles: synthesis, characterization, and magnetic field-induced self-assembly, J. Solid State Chem. 159 (2001) 26.
[34] G.D. Moeser, K.A. Roach, W.H. Green, P.E. Laibinis, T.A. Hatton, Water-based magnetic fluids as extractants for synthetic organic compounds, Industrial and Engineering Chemistry Research, 41 (2002) 4739-4749.
[35] J.Y. Tseng, C.Y. Chang, Y.H. Chen, C.F. Chang, P.C. Chiang, Synthesis of micro-size magnetic polymer adsorbent and Its application for the removal of Cu(II) ion, colloid. surface. A., Physicochemical and Engineering Aspects, 295 (2007) 209-216.
[36] Geoffrey D. Moeser, Kaitlin A. Roach, William H. Green, Paul E. Laibinis, T. Alan Hatton, Water-based magnetic fluids as extractants for synthetic organic compounds, Ind. Eng. Chem. Res, 41 (2002) 4739-4749.
[37] S. Nath, C. Kaittanis, V. Ramachandran, N. Dalal, J.M. Perez, Synthesis, magnetic characterization and sensing applications of novel dextran-coated iron oxide nanorods, Chem of Mater. 21 (2009) 1761-1767.
[38] L.T. Leet, P. Somasundara, Adsorption of polyacrylamide on Ooxide minerals, Langmuir, 5 (1989) 854-860.
[39] M.D. Kaminski, L. Nuñez, A.E. Visser, Evaluation of extractant-coated ferromagnetic microparticles for the recovery of hazardous metals from waste solution, Separation Science and Technology, 34 (1999) 1103-1120.
[40] D.A. Fleming, M. Napolitano, M.E. Williams, Chemically functional alkanethiol derivatized magnetic nanoparticles Proc. Mater. Res. Soc. 746 (2002) 207–212.
[41] H.A. Tsai, C.H. Chen, W.C., Influence of surface hydrophobic groups on the adsorption of proteins onto nonporous Polymeric particles with immobilized metal ions, J. Colloid Interface Sci. 15 (2001) 379-383.
[42] C.B. Bauer, R.D. Rogers, L. Nunez, Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation: Report ANL-95/26, Argonne National Laboratory, Argonne (1995).
[43] S.A. Milani, B. Rahnama, A.K. Darban, Adsorptive removal and recovery of U(VI) from single component aqueous solutions by sugarcane bagasse impregnated with magnetite nanoparticles, J of Nuclear Sci. and Tech. 67 (2014) 24-34.
[44] P. Ashtari, K. Wang, X. Yang, S.J. Ahmadi, Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles, Anal. Chim. Acta, 646 (2009) 123-1277.
[45] B.A. Buchholz, H.E. Tuazon, M.D. Kaminski, S.B. Aase, L. Nuiiez, G.F. Vandegrift, Optimizing the coating process of organic actinide extractants on magnetically assisted chemical separation particles, Separation and Purification Technology, 11 (1997) 21l-219.
[46] G.Yi, X. Zhang, F.U. Liu, J. Cheng, Y. Mi, H. Zhang, Preparation of CNTs-supported Fe3O4 and Fe3C nanoparticles and the investigation on their magnetic properties, Proceedings of 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems-NEMS (2006) 649-652.
[47] R.Y. Hong, T.T. Pan, H.Z. Li, Microwave synthesis of magnetic Fe3O4 nanoparticles used as aprecursor of nanocomposites and ferrofluids, J. Magnetism and Magnetic Materials, 303 (2006) 60–68.
[48] A.K. Gupta, S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3 (2004) 66–73.
[49] L. Hu, D. Hach, D. Chaumont, C.-H. Brachais, J.-P. Couvercelle, One step grafting of monomethoxy poly (ethylene glycol) during synthesis of maghemite nanoparticles in aqueous medium. Colloids Surf. A, 330 (2008) 1–7.
[50] H. Basti, L.B. Tahar, L.S. Smiri, F. Herbst, M.-J. Vaulay, F. Chau, S. Ammar, S. Benderbous, Catechol derivatives-coated Fe3O4 and Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interface Sci. 341 (2010) 248–254.
[51] M. Kim, J. Jung, J. Lee, K. Na, S. Park, J. Hyun, Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles. Colloids Surf. B, 76 (2010) 236–240.
[52] D.A.H. Hanaor, M. Michelazzi, C. Leonelli, C.C. Sorrell, The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. Journal of the European Ceramic Society, 32 (2012) 235–244.
[53] R. Greenwood, K. Kendall, Selection of Suitable Dispersants for Aqueous Suspensions of Zirconia and Titania Powders using Acoustophoresis, Journal of the European Ceramic Society, 19 (1999) 479-488.
[54] H. Zhang, Preparation and applications of catalytic magnetite nanoparticles, Dept. of chemical engineering, Massachusetts institute of technology, 10.992 Student Seminar Series November 27 (2006).
[55] S.A. Gomez-Lopera, J.L. Arias, V. Gallardo, A.V. Delgado, Colloidal stability of magnetite/poly- (lactic acid) core/shell nanoparticles, Langmuir, 22 (2006) 2816–2821.
[56] S. Mondini, C. Drago, A.M. Ferretti, A. Puglisi, A. Ponti, Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant, Nanotechnology, 24 (2013) 105702 (14pp).
[57] B.A. Buchholz I, H.E. Tuazon, M.D. Kaminski, S.B. Aase, L. Nuiiez, G.F. Vandegrift, Optimizing the coating process of organic actinide extractants on magnetically assisted chemical separation particles, Separation and Purification Technology, 11 (1997) 211-219.