نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده نانو، دانشگاه سیستان و بلوچستان، صندوق پستی: 987-98155، زاهدان - ایران

2 گروه مهندسی مواد، دانشکده مهندسی، دانشگاه سیستان و بلوچستان، صندوق پستی: 987-98155، زاهدان- ایران

چکیده

کاربرد Li2TiO3 به‌عنوان زایشگر تریتیم در رآکتور گداخت از اهمیت قابل‌توجهی برخوردار است. هدف از این پژوهش تهیه پودر Li2TiO3 از طریق یک روش مقرون به‌صرفه و کارآمد بود. بدین منظور این ماده از روش جدید احتراقی محلول در حالت انفجاری تهیه شد. در این روش مقدار اسید نیتریک به‌عنوان اکسنده و نوع سوخت نقش کلیدی دارند. مقدار مصرف اسید نیتریک و اثر سوخت­‎های اسید سیتریک، گلایسین و گلوکز مورد بررسی قرار گرفتند. بررسی عامل سوخت نشان داد که استفاده از اسید سیتریک منجر به سنتز Li2TiO3 شد. استفاده از گلایسین سبب سنتز این ماده به همراه ناخالصی عمده TiO2 شد. گلوکز نیز به طور کلی نمی‌­تواند منتهی به تهیه Li2TiO3 شود. مقدار بهینه اسید نیتریک به ازای هر مول سوخت مصرفی تعیین شد. استفاده کم‌­تر از مقدار بهینه منجر به ناقص انجام شدن واکنش احتراق شد. استفاده بیش‌­تر از مقدار بهینه نیز سبب به­ جا ماندن ناخالصی LiTiO2 شد. با استفاده از سوخت اسید سیتریک و استفاده از 9 لیتر اسید نیتریک به ازای هر مول سوخت، پودر Li2TiO3 خالص و تک فاز با موفقیت تهیه شد.

کلیدواژه‌ها

عنوان مقاله [English]

The preparation of Li2TiO3 powder via solution combustion synthesis for using in fusion reactor as tritium breeder

نویسندگان [English]

  • H. Kaspoor 1
  • A.R. Abbasian 2
  • M. Shafiee Afarani 2

1 Department of Nanotechnology, University of Sistan and Baluchestan, P.O. BOX: 98155-987, Zahedan - Iran.

2 Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, P.O. BOX: 98155-987, Zahedan - Iran

چکیده [English]

Li2TiO3 as a tritium breeder has a significant role in nuclear fusion reactors. The aim of this study was the synthesis of Li2TiO3 powder by solution combustion in the explosive mode as an inexpensive and efficient method. Fuel type and nitric acid, as an oxidizer, have vital roles in this method. Hence, the effect of nitric acid content and citric acid, glucose, and glycine fuels were investigated. Results showed that the use of glucose fuel was not appropriate, because the combustion didn't occur, neither the desired phase was not synthesized. Moreover, synthesis in the presence of glycine fuel led to the synthesis of the desired product, however, no pure single-phase product was obtained. Contrary to the two mentioned fuels, citric acid was a suitable fuel for the synthesis of Li2TiO3 by solution combustion method, which resulted in a single-phase product. The optimum amount of nitric acid was determined to be 9 liters per mole of fuel. Using more than the optimal amount of nitric acid also resulted in LiTiO2 impurities being left. While using less than the optimal amount resulted in an incomplete combustion reaction.

کلیدواژه‌ها [English]

  • Fusion reactor
  • Tritium breeder
  • Solution combustion synthesis
  • Fuel type
  • Li2TiO3

1. H. Mao, B. Li, Sol–Gel Synthesis of Porous Li2TiO3 for High-Performance Electrochemical Super-capacitors, Nano, 13, 1850027 (2018).

 

2. R. Pfenninger, et al. Lithium Titanate Anode Thin Films for Li‐Ion Solid State Battery Based on Garnets, Adv. Funct. Mater. 28, 1800879 (2018).

 

3. P. Friedberg, Plasma physics and nuclear fusion energy, translate by R. Amrollahi, M. Habibi, Amirkabir University of Technology, )2018).

 

4. J.G. van der Laan, J. Reimann, A.V. Fedorov, Ceramic Breeder Materials,  Reference Module in Materials Science and Materials Engineering, Elsevier, (2016).

 

5. A.R. Abbasian, M.R. Rahimipour, Z. Hamnabard, Activation Energies for Initial and Intermediate Stage Sintering of Li2TiO3 Determined by a Two-Stage Master Sintering Curve Approach, in: V. Pshikhopov, D. Foti (Eds.) Advances in Engineering Mechanics and MaterialsSantorini Island, Greece, 291-296 (2014).

 

6. K. Yamaguchi, et al. Hydrogen Atmosphere Effect on Vaporization of Lithium-Based Oxide Ceramics by Means of High Temperature Mass Spectrometry and Work Function Measurement, J. Mass Spectrom. Soc. Jpn., 47, 10 (1999) .

 

7. A.R. Abbasian, M.R. Rahimipour, Z. Hamnabard, Initial Sintering Kinetics of Lithium Meta Titanate at Constant Rates of Heating, Iran. J. Mater. Sci. Eng. 10,  44 (2013).

 

8. Y.W. Zhai, et al., Preparation and Characterization of Lithium Orthosilicate Ceramic Pebbles by Melt Spraying Method, Key Engineering Materials, Trans. Tech. Publ., 967, 818 (2016).

 

9. J.D. Lulewicz, N. Roux, Fabrication of Li2TiO3 pebbles by the extrusion–spheronisation–sintering process, J. Nucl. Mater., 307 (1), 803 (2002).

 

10. T. Hoshino, Development of fabrication technologies for advanced tritium breeder pebbles by the sol–gel method, Fusion Eng. Des. 88, 2264 (2013).

 

11. Q. Zhou, et al. Fabrication of Li2TiO3 pebbles by a selective laser sintering process, Fusion Eng. Des. 100, 166 (2015).

 

12. K. Tsuchiya, et al. Control of particle size and density of Li2TiO3 pebbles fabricated by indirect wet processes, J. Nucl. Mater. 345, 239 (2005).

 

13. G. Ran, et al. Tritium release behavior of Li4SiO4 pebbles with high densities and large grain sizes, J. Nucl. Mater. 492, 189 (2017).

 

14. B.M. Tripathi, et al., Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior, J. Nucl. Mater. 490, 167 (2017).

 

15. H. Guo, et al., Low-cost fabrication of Li2TiO3 tritium breeding ceramic pebbles via low-temperature solid-state precursor method, Ceram. Int. 45 (14), 17114 (2019).

 

16. I.A. Carbajal-Ramos, et al., Formation of cubic Li2TiO3 by mechanical activation and its transformation to monoclinic phase: Stability in helium and hydrogen flows, Solid State Ionics, 308, 46 (2017).

 

17. X. Wu, et al., Sol–gel synthesis and sintering of nano-size Li2TiO3 powder, Materi. Lett. 62, 837 (2008).

 

18. M. Hong, et al., Synthesis of Li2TiO3 by sol–gel combustion method and its gel-casting formation, J. Nucl. Mater. 455, 311 (2014).

 

19. A.R. Abbasian, M.R. Rahimipour, Z. Hamnabard, Hydrothermal Synthesis of Lithium Meta Titanate Nanocrystallites, Procedia Mater Sci. 11, 336 (2015).

 

20 C.-L. Yu, et al., Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure, Ceram. Int. 40, 1901 (2014).

 

21. S. Wang, et al., Hydrothermal synthesis of lithium-enriched [small β]-Li2TiO3 with an ion-sieve application: excellent lithium adsorption, RSC Advances, 6, 102608 (2016).

 

22. Q. Zhou, et al., Preparation of Li2TiO3 by hydrothermal synthesis and its structure evolution under high energy Ar+ irradiation, J. Eur. Ceram. Soc. 37, 4955 (2017).

 

23. K.-M. Min, Y.-H. Park, S. Cho, Synthesis of Li2TiO3 powder with high crystalline structure for tritium breeding material by ion-exchange process, Fusion Engi. Des., 326, 109-111 (2016).

 

24. Q. Zhou, et al., Preparation of Li2TiO3 ceramic with nano-sized pores by ultrasonic-assisted solution combustion, J. Eur. Ceram. Soc. 37, 3595 (2017).

 

25. C.H. Jung, et al., Synthesis of Li2TiO3 ceramic breeder powders by the combustion process, J. Nucl. Mater., 253, 203 (1998).

 

26. S.J. Lee, Characteristics of lithium titanate fabricated by an organic-inorganic solution route, J. Ceram. Process. Res. 9, 64 (2008).

 

27. A. Sinha, S.R. Nair, P.K. Sinha, Single step synthesis of Li2TiO3 powder, J. Nucl. Mater. 399, 162 (2010).

 

28. Q. Zhou, et al., Effect of fuel-to-oxidizer ratios on combustion mode and microstructure of Li2TiO3 nanoscale powders, J. Eur. Ceram. Soc. 34, 801 (2014).

 

29. Y. Gu, et al. Effect of glucose on the synthesis of iron carbide nanoparticles from combustion synthesis precursors, J. Am. Ceram. Soc. 99, 1443 (2016).

 

30. S.A. Hosseini, V. Majidi, A.R. Abbasian, Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization, J. Sulfur Chem. 39, 119 (2018).

 

31. Fact Web Plus, http://www.crct.polymtl.ca/ reacweb_plus.php, (2019).

 

32. A.R. Abbasian, M.R. Rahimipour, Z. Hamnabard, Phase transformation during sintering of Li2TiO3 nanocrystallites synthesised by hydrothermal method, Micro & Nano Lett. Inst. Eng. and Technol. 11(12), 822 (2016).

 

33. R. Ramaraghavulu, S. Buddhudu, G. Bhaskar Kumar, Analysis of structural and thermal properties of Li2TiO3 ceramic powders, Ceram. Int. 37, 1245 (2011).

 

34. Q. Zhou, et al. Flash synthesis of Li2TiO3 powder by microwave-induced solution combustion, J. Nucl. Mater., 455, 101 (2014).

 

35. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Sixth Edition ed. (John Wiley & Sons, Hoboken, New Jersey, 2009).

 

36. D.A.H. Hanaor, et al. Solution based synthesis of mixed-phase materials in the Li2TiO3–Li4SiO4 system, J. Nucl. Mater. 456, 151(2015).

 

37. A. León, et al. FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, Appl. Sci. 7, 49 (2017).

 

38. A. Laumann, et al. Iversen, Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—Its stability and structural properties, Solid State Ionics, 181, 1525 (2010).

 

39. S.A. Hosseini, et al. Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4  nanospinel, Int. J. Environ. Sci. Technol. (2018).

 

40. S.A. Hosseini, M. Davodian, A.R. Abbasian, Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides, J. Taiwan Inst. Chem. Eng. 75, 97 (2017).

 

41. M. Shahmirzaee, et al., In situ crystallization of ZnAl2O4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater, Res. Chem. Intermed. 43, 321 (2017).

 

42. M. Zahiri, M. Shafiee Afarani, A.M. Arabi, Dual functions of thiourea for solution combustion synthesis of ZnO/ZnS composite powders: fuel and sulphur source, Appl. Phys. A, 124, 663 (2018).

 

43. S. Kumar, S. Ramnathan, N. Krishnamurthy, Thermal decomposition, phase evolution, sintering and characterization of lithium titanate synthesized by sol-gel process, Process. Appl. Ceram. 5, 13 (2011).

 

44. F. Kaedi, et al., Ethanol electrooxidation on high-performance mesoporous ZnFe2O4-supported palladium nanoparticles, New J. Chem. 43, 3884 (2019).

 

45. NIST Chemistry WebBook, National Institute of Standards and Technology, https://webbook.nist. gov, (2019).

 

46. J.A. Dean, Lange's handbook of chemistry, New york; London: McGraw-Hill, Inc (2004).