نوع مقاله : مقاله فنی

نویسندگان

1 دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، صندق پستی: 4413-15875، تهران - ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

چکیده

در این پژوهش استخراج اورانیم از محلول فروشویی سنگ معدن اورانیم با استفاده از روش استخراج حلالی برای اولین بار در یک ستون استخراج ضربه‌ای افقی از نوع سینی‌دار مورد بررسی قرار گرفت. استخراج اورانیم از محیط سولفاته با غلظت 1-mol.L 25/0، توسط حلال تری اکتیل آمین با غلظت 5 درصد حجمی، در رقیق‌­کننده‌ی کروزن با 90 درصد حجمی و اصلاح­‌کننده‌ی فازی دکانول با غلظت 5 درصد حجمی انجام گرفت. تأثیر پارامترهای عملیاتی شامل شدت ضربه، نرخ جریان فاز پراکنده و نرخ جریان فاز پیوسته بر روی موجودی فاز پراکنده، قطر میانگین ساتر قطرات و توزیع آن­‌ها و هم‌­چنین درصد استخراج به دست آمد. افزایش شدت ضربه و افزایش نرخ جریان فاز پراکنده و هم‌­چنین کاهش نرخ جریان فاز پیوسته باعث افزایش درصد استخراج گردید. نتایج نشان می‌دهد که ستون استخراج ضربه‌ای افقی از نوع سینی‌دار دارای بازدهی بالا برای استخراج اورانیم از محلول فروشویی و از نظر بازدهی استخراج قابل رقابت با ستون­‌های ضربه‌ای سینی‌دار از نوع عمودی می‌باشد. با مقایسه روابط متعدد ارایه شده برای موجودی فاز پراکنده و اندازه قطره با نتایج تجربی به دست آمده در این پژوهش، رابطه‌ی جدیدی برای پیش‌­بینی قطر میانگین قطرات و هم­‌چنین موجودی فاز پراکنده در یک ستون استخراج ضربه‌ای برای استخراج اورانیم ارایه گردید. در مدل ارایه شده، مقدار متوسط خطای مطلق برای اندازه قطره 7/7% و برای موجودی فاز پراکنده 2/8% به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of hydrodynamic parameters and separation efficiency of uranium by Tri-n octylamine in a horizontal pulse sieve plate column

نویسندگان [English]

  • H. Badakhshan 1
  • A. Gharib 1
  • F. Panahinia 2
  • M. Ghannadi-Maragheh 2
  • J. Safdari 2
  • M.H. Mallah 1

1 Energy Engineering and Physics Department, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran – Iran

چکیده [English]

In this study, recovery of uranium from leach liquor using solvent extraction technique in a horizontal pulsed sieve plate column was experimentally investigated. Extraction of uranium from an aqueous sulfate solution with 0.25M concentration acid, by using TOA solvent, diluted in kerosene and n-decanol modifier of 5%, 90% and 5% v/v respectively was studied and the influences of operation parameters including the phase flow rates along with pulsation intensity on the dispersed phase holdup, drop size and drop size distribution, as well as extraction efficiency, were evaluated. Increasing pulsation intensity along with the dispersed phase flow rate and decreasing the continuous phase flow rate caused to increase the extraction efficiency. Results showed that the horizontal pulsed sieve plate column has high efficiency for extraction of the uranium from leach liquor. Moreover, a comparative evaluation of available correlations proposed for the prediction of mean drop size and hold up in such columns have been conducted. New correlations for estimating mean drop size and hold up in a horizontal pulsed sieve-plate column were presented, which provided AARE of 7.7% and 8.2%, respectively.

کلیدواژه‌ها [English]

  • Uranium extraction
  • Dispersed phase holdup
  • Sauter mean drop diameter
  • Horizontal pulsed sieve-plate column
1. M. Karve, R.V. Rajgor, Amberlite XAD-2 impregnated organophosphinic acid extractant for separation of uranium (VI) from rare earth elements, Desalination, 232, 191-197 (2008).
 
2.             O. Abderrahim, M. Didi, D. Villemin, A new sorbent for uranium extraction: polyethylenimine-phenylphosphonamidic acid, Journal of Radioanaly-tical and Nuclear Chemistry, 279, 237-244 (2009).
 
3. H.S. Ferreira, M. de Almeida Bezerra, S.L.C. Ferreira, A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water, Microchimica Acta, 154, 163-167 (2006).
 
4. S. Girgin, N. Acarkan, A.A. Sirkeci, The uranium (VI) extraction mechanism of D2EHPA-TOPO from a wet process phosphoric acid," Journal of radioanalytical and nuclear chemistry, 251, 263-271 (2002).
 
5.  Q. Jia, et al, Adsorption of heavy rare earth (III) with extraction resin containing bis (2, 4, 4-trimethylpentyl) monothiophosphinic acid, Journal of alloys and compounds, 374, 434-437 (2004).
 
6. E. Karapinar, N. Kabay, Synthesis, characterization and liquid–liquid extraction properties of new methoxyaminobiphenylglyoxime derivatives and their complexes with some transition metals, Transition Metal Chemistry, 32, 784-790 (2007).
 
7. M. Mahramanlioglu, Adsorption of uranium on adsorbents produced from used tires, Journal of radioanalytical and nuclear chemistry, 256, 99-105 (2003).
 
8. M. Radenković, et al, Chemical and radiochemical characterization of depleted uranium in contaminated soils, Russian Journal of Physical Chemistry A, 81, 1448-1451 (2007).
 
9. V.S. Kislik, Solvent extraction: classical and novel approaches, Elsevier, (2012).
 
10. R. Torkaman, et al, Extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA in a pulsed disc and doughnut column, Journal of the Taiwan Institute of Chemical Engineers, 48, 18-25 (2015).
 
11. R. Ring, Current practice for the milling of uranium ores, in Uranium 2000: International symposium on the process metallurgy of uranium, (2000).
 
12. M. Benedict, H. Levi, T. Pigford, Nuclear chemical engineering, Nucl. Sci. Eng, (United States), 82, (1982).
 
13. J.D. Thornton, Science and Practice of Liquid-liquid Extraction: Process chemistry and extraction operations in the hydrometallurgical, nuclear pharmaceutical and food industries, 2, Oxford University Press, USA, (1992).
 
14. M.L. Dietz, J.A. Dzielawa, Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid–liquid extraction, Chemical Communications, 2124-2125 (2001).
 
15. G.-T. Wei, Z. Yang, C.-J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Analytica Chimica Acta, 488, 183-192 (2003).
 
16. S. Bagawde, V. Ramakrishna, S. Patil, Complexing of tetravalent plutonium in aqueous solutions, Journal of Inorganic and Nuclear Chemistry, 38, 1339-1345 (1976).
 
17. S. Bagawde, et al, The effect of temperature on the extraction of uranium (VI) from nitric acid by tri-n-butyl-phosphate, Journal of Inorganic and Nuclear Chemistry, 40, 1913-1918 (1978).
 
18. T. Sato, The extraction of uranium (VI) from nitric acid solutions by di-(2-ethylhexyl)-phosphoric acid, Journal of Inorganic and Nuclear Chemistry, 25, 109-115 (1963).
 
19. T. Sato, T. Nishida, The extraction of uranium (VI) from hydrochloric acid solutions by tri-n-octyl phosphine oxide, Journal of Inorganic and Nuclear Chemistry, 36, 2087-2089 (1974).
 
20. Y. Yan-Zhao, et al, Synergistic extraction of uranium (VI) with mixtures of bis (hexylsulfinyl) ethane (BHxSE) and petroleum sulfoxides (PSO), Journal of radioanalytical and nuclear chemistry, 258, 403-408 (2003).
 
21. G. Zhijun, et al, Liquid-liquid extraction of uranium (VI) and thorium (IV) by two open-chain crown ethers with terminal quinolyl groups in chloroform, Journal of radioanalytical and nuclear chemistry, 258, 199-203 (2003).
 
22. P. Roberto Danesi, R. Chiarizia, C.F. Coleman, The kinetics of metal solvent extraction, (1980).
 
23. J. Goldenberg, C. Abbruzzese, Extraction of uranium from heap leach liquor with tri-n-octylamine: Equilibrium data and flow-sheet calculations, International Journal of Mineral Processing, 10, 241-254 (1983).
 
24. J.R. Kumar, et al, A brief review on solvent extraction of uranium from acidic solutions, Separation & Purification Reviews, 40, 77-125 (2011).
 
25. C. Coleman, et al, Solvent extraction with alkyl amines, Industrial & Engineering Chemistry, 50, 1756-1762 (1958).
 
26. R. Movsowitz, R. Kleinberger, E. Buchalter, Application of Bateman pulse columns for uranium solvent extraction, Bateman Projects Ltd., Israel, (1997).
 
27. R. Movsowitz, et al, Comparison of the performance of full scale pulsed columns vs. mixer-settlers for uranium solvent extraction, in Uranium 2000: International symposium on the process metallurgy of uranium, (2000).
 
28. B. Grinbaum, Review Article: The Existing Models for Simulation of Pulsed and Reciprocating Columns—How Well do they Work in the Real World?, Solvent extraction and ion exchange, 24, 795-822 (2006).
 
29. A. Jahya, G. Stevens, H. Pratt, Pulsed Disc‐and‐Doughnut Column Performance, Solvent extraction and ion exchange, 27, 63-82 (2009).
 
30. M.F. Vancas, Pulsed column and mixer-settler applications in solvent extraction, JOM, 55, 43-45 (2003).
 
31. M. Khajenoori, et al, Prediction of drop size distribution in a horizontal pulsed plate extraction column, Chemical Engineering and Processing: Process Intensification, 92, 25-32 (2015).
 
32. M. Khajenoori, et al, Slip and Characteristic Velocities in a Horizontal Pulsed‐Plate Extraction Column, Chemical Engineering & Technology, 38, 1783-1792 (2015).
 
33. A. Melnyk, S. Vijayan, D. Woods, Hydrodynamic behaviour of a horizontal pulsed solvent extraction column. part 1: Flow characterization, throughput capacity and holdup, The Canadian Journal of Chemical Engineering, 70, 417-425 (1992).
 
34. L. Rinconrubio, A. Kumar, S. Hartland, Drop-size distribution and average drop size in a Wirz extraction column, Chemical engineering research & design, 72, 493-502 (1994).