نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط‌زیست، دانشکده مدیریت، دانشگاه آزاد اسلامی واحد تهران غرب، صندوق پستی: 785-1468763 تهران، ایران

2 پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 836-14395،کرج-ایران

چکیده

هدف مطالعه حاضر بررسی کارایی گندزدایی و کنترل رشد مجدد آلودگی زیستی ﭘﺴﺎب ﻓﺎﺿﻼب شهری با استفاده از تیمار‌ پلاسمای سرد اتمسفری است. پساب ثانویه تصفیه‌خانه تهران جنوب با استفاده از پلاسمای اسپارک در دو ولتاژ 20 و 25 کیلوولت و زمان‌های 1، 3 و 6 دقیقه با استفاده از گاز اکسیژن تیمار شد. خصوصیات فیزیکی و شیمیایی قبل و بعد هر تیمار اندازه‌گیری شدند. کارایی گندزدایی بر‌اساس تعیین ‌تعداد کل‌کلنی و کلیفرم ‌کل در پساب ثانویه و خروجی تیمارها، مورد بررسی قرار گرفت. نتایج نشان داد که مقادیر 5‌BOD‌، COD و نیتروژن‌ کل در هر دو تیمارها به کم‌تر از حد مجاز برای مصارف کشاورزی رسید لیکن این کاهش به‌طور معنی‌­داری در ولتاژ بالاتر بیش‌تر بود. کارایی گندزدایی در زمان شروع آزمایش در هر دو تیمار 100 درصد بود، لیکن تنها پس از گذشت یک روز در همه تیمارها جمعیت کلیفرم‌ کل بیش‌تر از حد مجاز بود که لزوم بررسی رشد مجدد میکروبی را در زمان بررسی روش‌­های مختلف گندزدایی ثابت می‌­کند. نتایج این تحقیق نشان داد که پلاسما اسپارک استفاده شده تأثیری در غیرفعال‌سازی دائمی و غیرقابل برگشت کلیفرم کل نداشت و رشد مجدد میکروبی رخ داد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of direct in liquid spark plasma on disinfection effectiveness and regrowth control of microbial contamination in urban wastewater

نویسندگان [English]

  • A. Barikani 1
  • M. Khodadadi 2
  • S. Khorami Pour 1

1 Department of Environment, Management Faculty, Islamic Azad University, West Tehran Branch, P.O. Box:1468763-785 Tehran, Iran

2 Nuclear agriculture research school, Nuclear Science and Technology Institute, P.O. Box: 14395-836 Karaj, Iran

چکیده [English]

The aim of present study is to evaluate thedisinfection efficiency and regrowth control of microorganism in urban wastewater effluent using cold atmospheric plasma. Two voltages of spark of 20 and 25 kV were applied to wastewater samples of Tehran wastewater treatment plant, Tehran, Iran on 1, 3, and 6 min using oxygen gas supply. The physicochemical characteristics of the effluent sample were determined before and after the treatments. The disinfection efficiency was assessed based on the total colony count and total coliform. The results showed that the COD, BOD5, and the total nitrogen became less than the maximum allowed for agriculture purposes in both treatments, however, this reduction was significantly more in the higher voltage. In terms of bacterial regrowth after disinfection, disinfection efficiency was 100 percent at the beginning of the experiment in all spark treatments, however, total coliform population has become higher than the allowed limit after only one day. This confims the importance of investigating microbial regrowth in wastewater disinfection studies. The spark plasma had no effect on permanent and irreversible inactivation of the total coliform and microbial regrowth occurred.

کلیدواژه‌ها [English]

  • Cold atmospheric plasma
  • Disinfection
  • Microbial regrowth
  • Urban wastewater
1.    N. Mansouri, in: Environmental Pollution, 1nd ed. (Arad Book, Tehran, 2011), pp. 163-286. (In Persian)
 
2.     J. Shayegan, A. Afshari, The Treatment Situation of Municipal and Industrial Wastewater in Iran, Journal of Water and Wastewater. 15, 58-69 (2004). (In Persian)
 
3.   J. Abedi Koupai, M. Javahery Tehrani, K. Behfarnia, Improvement the Quality of Wastewater using Porous Concrete for Irrigation, JWSS. 19, 93-107 (2015). (In Persian)
 
4.     O.M. Lee, H.Y. Kim, W. Park, T.H. Kim, S. Yu, A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process, J Hazard Mater. 295, 201-208 (2015).
 
5.    Environmental Criteria of Treated Waste Water and Return Flow Reuse No. 535, https://health.umsu.ac.ir/uploads/effluent_reuse.pdf. (In Persian)
 
6.    D. Vujevic, N. Koprivanac, A. Loncaric Bozic, B.R. Locke, The removal of direct orange 39 by pulsed corona discharge from model wastewater, Environ Technol. 25(7) ,791–800, (2004), doi:10.1080/09593330. 2004.9619370
 
7.    A. Karimpour, in Fourth Specialized Conference on Environmental Engineering, Advanced Oxidation Process and its Application in Industrial Wastewater Treatment (University of Tehran, 2010). (In Persian)
 
8.    E.S.M. Mouele, J.O. Tijani, O.O. Fatoba, L. F. Petrik, Degradation of organic pollutants and
microorganisms from wastewater using different dielectric barrier discharge configurations-a critical review, Environ Sci Pollut Res Int. 22(23), 18345-18362 (2015).
 
9.   W.S. El-Sayed, S.A. Ouf, A.A.H. Mohamed, Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA- DGGE fingerprinting, Front Microbiol. 6, 1098 (2015).
 
10.  A.A. Joshi, B.R. Locke, P. Arce, W.C. Finney, Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, J. Hazard. Mater. 41(1), 3-30 (1995).
 
11.  A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658 (2002).
 
12.   B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann, J.S. Chang, Electrohydraulic discharge and nonthermal plasma for water treatment, Ind. Eng. Chem. Res. 45(3), 882-905 (2006).
 
13.   B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Review on electrical discharge plasma technology for wastewater remediation, CHEM ENG J. 236, 348-368 (2014).
 
14.  H.S. Kim, K. Wright, J. Piccioni, D.J. Cho, Y.I. Cho, Inactivation of bacteria by the application of spark plasma in produced water, SEP PURIF TECHNOL. 156, 544-552 (2015).
 
15.  P. Attri, F. Tochikubo, J.H. Park, E.H. Choi, K. Koga, M. Shiratani, Impact of Gamma rays and DBD plasma treatments on wastewater treatment, Sci. Rep. 8(1), 2926 (2018).
 
16.   J. Zheng, Inactivation of Staphylococcus aureus in water by pulsed spark discharge, Sci. Rep. 7(1), 10311 (2017).
 
17.   A.N. Hernández-Arias, B.G. Rodríguez-Méndez, R. López-Callejas, D. Alcántara-Díaz, R. Valencia-Alvarado, A. Mercado-Cabrera, R. Peña-Eguiluz, A.E. Muñoz-Castro, S.R. Barocio, A. De la Piedad-Beneitez, Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor, J Water Health. 10(3):371–379 (2012).
 
18.  V.I. Grinevich, E.Y. Kvitkova, N.A. Plastinina, V.V. Rybkin, Application of dielectric barrier discharge for waste water purification, Plasma  Chem. Plasma Process. 31(4), 573-583 (2011).
 
19.   D. Van Nguyen, P.Q.  Ho, T. Van Pham, T. Van Nguyen, L. Kim, A study on treatment of surface water using cold plasma for domestic water supply, Environ. Eng. Res. 24(3), 412-417 (2019).
 
20.   A.A.H. Mohamed, S.M. Al Shariff, S.A. Ouf, M. Benghanem, Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater, J PHYS D APPL PHYS, 49(19), 195401, (2016).
 
21.   A. Hazmi, R. Desmiarti, E.P. Waldi, D. Darwison, Removal of Microorganisms in Drinking Water using Pulsed HighVoltage, JETS. 45(1), 1-8 (2014).
 
22. T.E. Njoyim, Y.T. Djoko, J. Ghogomu, S.A. Djepang, S. Laminsi, Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory, IJERA. 6, 60-71 (2016).
 
23.  K. Satoh, S.J. MacGregor, J.G. Anderson, G. A. Woolsey, R.A. Fouracre, Pulsed plasma disinfection of water containing Escherichia coli, Jpn. J. Appl. Phys. Pulsed plasma disinfection of water containing Escherichia coli, Jpn. J. Appl. Phys. 46(3R), 1137 (2007).
 
24.  M. Sato, Environmental and biotechnological applications of high-voltage pulsed discharges in water, Plasma Sources Sci. Technol. 17, 024021 (2008).
 
25.  M.M. Kuraica, B.M. Obradovic, D. Manojlovic, D.R. Ostojic, J. Puric, Ozonized water generator based on coaxial dielectric barrier discharge in air, Vacuum. 73, 705–708 (2004).
 
26.   A. Patange, D. Boehm, M. Giltrap, P. Lu, P.J. Cullen, P. Bourke, Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents, Sci Total Environ. 631-632, 298-307 (2018).
 
27.  A. Patange, P. Lu, D. Boehm, P.J. Cullen, P. Bourke, Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling, Food Microbiology.  84, 103226 (2019).
 
28.   K. Oehmigen, M.  Hähnel, R. Brandenburg, C. Wilke, K.D. Weltmann, T. Von Woedtke, The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids, Plasma Process. Polym.7, (2010), doi:10.1002/ppap.200900077
 
29.  X. Liao, D. Liu, S. Chen, X. Ye, T. Ding, Degradation of antibiotic resistance contaminantas in wastewater by atomospheric cold plasma: kinetics and mechanisms, environmental technology. (2019), doi: 10.1080/09593330.2019.1620866
 
30. Tehran water supply and water and wastewater treatment company, Various units and processes in wastewater treatment, 2016, https://tww.tpww.ir. (In Persian)
 
31.  APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed.  (American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, (1998).
 
32.  J.E. Foster, Plasma-based water purification: Challenges and prospects for the future, Physics of Plasmas. 24(5), 05550 (2017).
 
33.  J. Foster, B.S. Sommer, S.N. Gucker, I.M. Blankson, G. Adamovsky, Perspectives on the Interaction of Plasmas With Liquid Water for Water Purification, IEEE T PLASMA SCI. 40, 1311 (2012)
 
34.   P. Bruggeman, C. Leys, Non-thermal plasmas in and in contact with liquids, J PHYS D APPL PHYS, 42(5), 053001 (2009).
 
35.   P.J. Bruggeman, D.C. Schram, On OH production in water containing atmospheric pressure plasmas, Plasma Sources Sci. Technol. 19, 045025 (2010).
 
36.   L. Tahri, D. Elgarrouj, S. Zantar, M. Mouhib, A. Azmani, F. Sayah, Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco, Radiat. Phys. Chem, 79(4), 424-428 (2010).
 
37.  M.A. Malik, Water Purification by Plasmas: Which Reactors are Most Energy Efficient, Plasma Chem Plasma Process. 30, 21–31 (2010).
 
38.  Y. Shen, L.C.  Lei, X.W. Zhang, M.H. Zhou, Y. Zhang, Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge, Energy conversion and management. 49, 2254 (2008).
 
39. World Health Organization (WHO), Health guidelines for the use of wastewater in agriculture and aquaculture, WHO technical report series, p. 778 (1989).
 
40.  FAO, Wastewater treatment and use in agriculture, (M.B. Pescod, FAO Irrigation and Drainage, Rome 1992), pp. 47.
 
41. US Environmental Protection Agency, 2012. Guidelines for Water Reuse (No. EPA/600/R-12/618).
 
42.  A.M. Shaeri, A. Rahmati, Rules, regulations, Human,s Environmental, Laws, Regulations Criteria and Standards, 1nd ed. (Hak Publications, 2012), pp.275. (In Persian)
 
43.  M. Sato, T. Ohgiyama, J. Clements, Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water, IEEE Trans. Ind. Appl. 32 (1) 106–112, (1996).
 
44. M. Laroussi, Low temperature plasma-based sterilization: overview and stateof-the-art, Plasma Processes Polym. 2‌(5), 391–400 (2005)
 
45. A. Fridman, Plasma chemistry. Cambridge university press (2008).
 
46.   P. Bruggeman, C. Leys, Non-thermal plasmas in and in contact with liquids, J. Phys. D Appl. Phys. 42 (5), 053001(2009).
 
47.  L. Han, S. Patil, K. M. Keener, P.J. Cullen, P. Bourke, Bacterial inactivation by highvoltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA, J. Appl. Microbiol. 116 (4), 784–794 (2014).
 
48.   M. Janex, P. Savoye, M. Roustan, Z. Do-Quang, J.M. Laîné, V. Lazarova, Wastewater Disinfection by Ozone: Influence of Water Quality and Kinetics Modeling, Ozone science & engineering, 22(2), 113-121(2000), doi:10.1080/01919510008547215
 
49.  X. Liu, F. Hong, Y. Guo, J. Zhang, J. Shi, Sterilization of Staphylococcus aureus by an atmospheric non-thermal plasma jet, Plasma Sci. Technol. 15 (5), 439–442 (2013).
 
50.  M. Zhang, J.K. Oh, L. Cisneros-Zevallos, M. Akbulut, Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces, J. Food Eng. 119(3), 425–432 (2013).
 
51.   S.A. Ermolaeva, E.V. Sysolyatina, N.I.  Kolkova, P. Bortsov, A.I. Tuhvatulin, M.M. Vasiliev, et al. Non-thermal argon plasma is bactericidal for the intracellular bacterial pathogen Chlamydia trachomatis, J. Med. Microbiol. 61,793–799 (2012), doi: 10.1099/jmm.0.038117-0
 
52.    S. Deng, R. Ruan, C.K. Mok, G. Huang, X. Lin, P. Chen, Inactivation of Escherichia coli on almonds using nonthermal plasma, J. Food Sci. 72, 62–66 (2007), doi: 10.1111/j.1750-3841.2007.00275.x
 
53.   D. Ziuzina, S. Patil, P.J. Cullen, K.M. Keener, P. Bourke, Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package, J. Appl. Microbiol. 114, 778–787 (2013), doi: 10.1111/jam. 12087
 
54.  M. Dors, E. Metel, J. Mizeraczyk, E. Marott, in: Proc. IEEE Int. Conf. Dielectr. Liquids, Pulsed corona discharge in water for coli bacteria inactivation (2008), pp. 1–3.
 
55.   X. Hao, A.M.  Mattson, C.M. Edelblute, M.A. Malik, L.C. Heller, J.F. Kolb, Nitric oxide generation with an air operated non-thermal plasma jet and associated microbial inactivation mechanisms, Plasma Proces. Polym. 11, 1044–1056 (2014), doi: 10.1002/ppap.2013.