A Peer - Reviewed Journal by Nuclear Science & Technology Research Institute

Document Type : Scientific Note

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran

2 Department of Physics, North Tehran Branch, Islamic Azad University, P.O.Box: 19585-936, Tehran, Iran

3 Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14115-6183, Tehran, Iran

Abstract

the Scandium-47 shows undertaking capability in therapeutic radionuclide, particularly in the single-photon emission computed tomography (SPECT) technique. In this study, for the production of the 47Sc, the proton interaction on natural titanium was investigated by the Karaj cyclotron. At first, the excitation functions for the production of 47Sc and accompanying impurities via proton bombardment of titanium targets were evaluated by three nuclear codes, TALYS-1.9, ALICE/ASH, and EMPIRE-3.2.2. The target thickness for the best range of suggested energy estimated through the stopping power using the SRIM-2013 code. The theoretical yields for each reaction were calculated using Simpson's integral. The natTi foil was irradiated by a 29.5 MeV incident proton beam in the Karaj Cyclotron.  The total current irradiated on the target was 5 μA·h at the end of the bombardment. The liquid-liquid extraction (LLX) method was employed for the separation of radiochemical impurities. Quality control was performed by γ-ray spectrometry. The separation yield of scandium-47 was 95%. The results showed good agreement with simulated and published experimental data.

Highlights

 

1.   ‌M.U. Khandaker, et al., Investigations of thenatTi(p,x)43,44m,44g,46,47,48Sc,48V nuclear processes up to 40 MeVAppl. Radiat. Isot. 67, 1348-1354 (2009).

 

2.  IAEA-TECDOC-1211, Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA Technical Report, Vienna, May (2001). Available, http://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1211.pdf.

 

3.   M.U. Khandaker, H. Haba, J. Kanaya, N. Otuka, Excitation functions of (d,x) nuclear reactions on natural titanium up to 24 MeVNucl. Instrum. Meth. B 296, 14-21 (2013).

 

4.     M. Mamtimin, F. Harmon,V.N. Starovoitova, Sc-47 production from titanium targets using electron linacsAppl. Radiat. Isot. 102, 1-4 (2015).

 

5.   L.‌Deilami-nezhad, et al., Production and purification of Scandium-47: A potential radioisotope for cancer theranosticsAppl. Radiat. Isot. vol. 118, no. September, pp. 124–130 (2016).

 

6.  S.F. Hosseini, M. Sadeghi, M.R. Aboudzadeh, Theoretical assessment and targeted modeling of TiO2 in a reactor towards the scandium radioisotopes estimationAppl. Radiat. Isot. 127, 116-121 (2017).

 

7.   B. Bartoś, A. Bilewicz, New method for 47Sc production in nuclear reactor Maria at ŚwierkNuclear Medicine and Biology. 37, 677-726 (2010).

 

‌8.   ‌E. Garrido, et al., New excitation functions for proton-induced reactions on natural titanium, nickel, and copper up to 70 MeVNucl. Instrum. Methods Phys. Res. B 383, 191-212 (2016).

 

9.     K.A. Domnanich, et al., 47Sc as useful βemitter for the radiotheragnostic paradigm: a comparative study of feasible production routesEJNMMI Radiopharmacy and Chemistry. 2(1):5 (2017).
 

 

10.  ‌R. Misiak, et al., 47Sc production development by cyclotron irradiation of 48CaJ. Radioanal. Nucl. Chem. 313, 429–434 (2017).

 

11.  A. Jafari, et al., Investigations of proton and deuteron induced nuclear reactions on natural and enriched TitaniumCalcium and Vanadium targets, with special reference to the production of 47ScAppl. Radiat. Isot. 152, 145-155 (2019).

 

12.  D. Koning, A.J. Rochman, Talys based evaluated nuclear data library (TENDL) data libraryAvailable from https://tendl.web.psi.ch/tendl_ 2019/talys.html.

 

13. ‌‌C.H.M. Broeders, et al., ALICE/ASH Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies. Available from http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf (2006).

 

14.  M. Herman, et al., Nuclear reaction model code empire-3.2 (malta) (2012).

 

15.  J.F. Ziegler, Interactions of ions with matter, Available from: http://www.srim.org/. (2013).

 

16.  M. Sadeghi, N. Zandi, M. Bakhtiari, Nuclear model calculation for cyclotron production of 61Cu as a PET imagingJ. Radioanal. Nucl. Chem.  291(2), 777-783 (2012).

 

17.  S. Lahiri, S. Banerjee, N.R. Das, LLX separation of carrier-free 47Sc, 48V and 48, 49, 51Cr produced in α-particle activated titanium with HDEHPAppl. Radiat. Isot. 47(1), 1-6 (1996).

 

18.  E. Gadioli, et al., Emission of alpha particles in the interaction of 10–85 MeV protons with 48,50TiZ. Physik A 301, 289-300 (1981).

 

19.   V.N. Levkovskii, The cross-sections of activation of nuclides of middle-range mass (A=40-100) by protons and alpha particles of middle range energies (E=10-50 MeV), Inter-Vesy, Moscow. (1991).

 

20.   K. Zarie, N. Al-Hammad, A. Azzam, Experimental study of excitation functions of some proton induced reactions on natTi for beam monitoring purposesRadiochimica Acta. 94 (12), 795-799 (2006).

 

21.  R. Michel, et al., Proton-induced reactions on titanium with energies between 13 and 45 MeV,. Journal of Inorganic & Nuclear Chemistry 40 (11), 1845–1851 (1978).

 

22.   R. Michel, et al., Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and AuNucl. Instrum. Methods Phys. Res. B 129, 153-193 (1997).

 

Keywords

 
1.   ‌M.U. Khandaker, et al., Investigations of thenatTi(p,x)43,44m,44g,46,47,48Sc,48V nuclear processes up to 40 MeV, Appl. Radiat. Isot. 67, 1348-1354 (2009).
 
2.  IAEA-TECDOC-1211, Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA Technical Report, Vienna, May (2001). Available, http://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1211.pdf.
 
3.   M.U. Khandaker, H. Haba, J. Kanaya, N. Otuka, Excitation functions of (d,x) nuclear reactions on natural titanium up to 24 MeV, Nucl. Instrum. Meth. B 296, 14-21 (2013).
 
4.     M. Mamtimin, F. Harmon,V.N. Starovoitova, Sc-47 production from titanium targets using electron linacs, Appl. Radiat. Isot. 102, 1-4 (2015).
 
5.   L.‌Deilami-nezhad, et al., Production and purification of Scandium-47: A potential radioisotope for cancer theranostics, Appl. Radiat. Isot. vol. 118, no. September, pp. 124–130 (2016).
 
6.  S.F. Hosseini, M. Sadeghi, M.R. Aboudzadeh, Theoretical assessment and targeted modeling of TiO2 in a reactor towards the scandium radioisotopes estimation, Appl. Radiat. Isot. 127, 116-121 (2017).
 
7.   B. Bartoś, A. Bilewicz, New method for 47Sc production in nuclear reactor Maria at Świerk, Nuclear Medicine and Biology. 37, 677-726 (2010).
 
‌8.   ‌E. Garrido, et al., New excitation functions for proton-induced reactions on natural titanium, nickel, and copper up to 70 MeV. Nucl. Instrum. Methods Phys. Res. B 383, 191-212 (2016).
 
9.     K.A. Domnanich, et al., 47Sc as useful β- emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes, EJNMMI Radiopharmacy and Chemistry. 2(1):5 (2017).
 
 
10.  ‌R. Misiak, et al., 47Sc production development by cyclotron irradiation of 48Ca, J. Radioanal. Nucl. Chem. 313, 429–434 (2017).
 
11.  A. Jafari, et al., Investigations of proton and deuteron induced nuclear reactions on natural and enriched Titanium, Calcium and Vanadium targets, with special reference to the production of 47Sc, Appl. Radiat. Isot. 152, 145-155 (2019).
 
12.  D. Koning, A.J. Rochman, Talys based evaluated nuclear data library (TENDL) data library, Available from https://tendl.web.psi.ch/tendl_ 2019/talys.html.
 
13. ‌‌C.H.M. Broeders, et al., ALICE/ASH Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies. Available from http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf (2006).
 
14.  M. Herman, et al., Nuclear reaction model code empire-3.2 (malta) (2012).
 
15.  J.F. Ziegler, Interactions of ions with matter, Available from: http://www.srim.org/. (2013).
 
16.  M. Sadeghi, N. Zandi, M. Bakhtiari, Nuclear model calculation for cyclotron production of 61Cu as a PET imaging, J. Radioanal. Nucl. Chem.  291(2), 777-783 (2012).
 
17.  S. Lahiri, S. Banerjee, N.R. Das, LLX separation of carrier-free 47Sc, 48V and 48, 49, 51Cr produced in α-particle activated titanium with HDEHP, Appl. Radiat. Isot. 47(1), 1-6 (1996).
 
18.  E. Gadioli, et al., Emission of alpha particles in the interaction of 10–85 MeV protons with 48,50Ti, Z. Physik A 301, 289-300 (1981).
 
19.   V.N. Levkovskii, The cross-sections of activation of nuclides of middle-range mass (A=40-100) by protons and alpha particles of middle range energies (E=10-50 MeV), Inter-Vesy, Moscow. (1991).
 
20.   K. Zarie, N. Al-Hammad, A. Azzam, Experimental study of excitation functions of some proton induced reactions on natTi for beam monitoring purposes, Radiochimica Acta. 94 (12), 795-799 (2006).
 
21.  R. Michel, et al., Proton-induced reactions on titanium with energies between 13 and 45 MeV,. Journal of Inorganic & Nuclear Chemistry 40 (11), 1845–1851 (1978).
 
22.   R. Michel, et al., Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au, Nucl. Instrum. Methods Phys. Res. B 129, 153-193 (1997).