1. W. Lang, et al, Nuclear charge and mass yields for 235U(nth, f) as a function of the kinetic energy of the fission products, Nucl. Phys. A 345, 34 (1980).
2. F.J. Hambsch, et al, Fission mode fluctuations in the resonances of 235U(n,f), Nucl. Phys. A 491, 56 (1989).
3. R. Hentzschel, et al, Mass, charge and energy distributions in the very asymmetric fission of 249Cf induced by thermal neutrons, Nucl. Phys. A 571, 427 (1994).
4. Yu.V. Pyatkov, et al, Manifestation of fine structures in the fission fragment mass-energy distribution of the 233U(nth,f), Nucl. Instrum. Methods, A 488, 381 (2002).
5. L. Dematte, et al, Fragments' mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu, Nucl. Phys. A 617, 331 (1997).
6. V.G. Vorob`yeva, et al, Mass yields and kinetic energy of fragments for fission of plutonium isotopes, Conf. on Neutron Physics, Kiev 1973, 3, 270 (1973).
7. H. Thierens, et al, Fragment Mass and Kinetic Energy Distributions for 242Pu(sf), 241Pu(n(th),f), and 242Pu(γ,f), Physical Review, Part C, Nuclear Physics, 29, 498 (1984).
8. K. Nishio, et al, Measurement of Fragment Mass Dependent Kinetic Energy and Neutron Multiplicity for Thermal Neutron Induced Fission of Plutonium-239, J. of Nuclear Science and Technology, 32, 404 (1995).
9. E. Allaert, et al, Energy and mass distributions for 241Pu (nth, f), 242Pu (sf) and 244Pu (sf) fragments, Nuclear Physics, A 380 (1), 61-71 (1982).
10. H. Thierens, et al, Kinetic energy and fragment mass distributions for Pu 240 (sf), Pu 239 (n th, f), and Pu 240 (γ, f), Physical Review, C 23 (5), 2104 (1981).
11. P. Schillebeeckx, et al, Comparative study of the fragments' mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu, Nuclear Physics, A 545 (3), 623-645 (1992).
12. Chemey, Alexander, et al, Total kinetic energy and mass yields from the fast neutron-induced fission of 239Pu, The European Physical Journal, A 56 (11),
1-13 (2020).
13. F. Caitucoli, et al, Mass and energy characteristics of the 241Pu (nth, f) fragments, Nuclear Physics, A 369 (1), 15-24 (1981).
14. M. Asghar, et al, Fission Fragment Energy Correlation Measurements for the Thermal Neutron Fission of 239Pu and 235U, Nuclear Physics, Section A, 311, 205 (1978) DOI: 10.1016/0375-9474(78)90510.
15. C. Tsuchiya, et al, Simultaneous Measurement of Prompt Neutrons and Fission Fragments for 239Pu(nth,f), J. of Nuclear Science and Technology, 37, Issue.11, 941 (2000). DOI: 10.3327/jnst.37.941.
16. A. Göök, et al, Correlated mass, energy, and angular distributions from bremsstrahlung-induced fission of 234U and 232Th in the energy region of the fission barrier, Phys. Rev. C 96, 044301 (2017).
17. M.D. Usang, et al, Correlated transitions in TKE and mass distributions of _ssion fragments described by 4-D Langevin equation, Scienti_c Reports, 9(1), 1-9 (2019).
18. M. Albertsson, et al, Correlation studies of fission-fragment neutron multiplicities, Physical Review, C 103 (1), 014609 (2021).
19. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects, Phys. Rev. C 14 (5), 1832-1863 (1976).
20. A. Ruben, H. Marten, D. Seeliger, Energy partition in nuclear fission, Z. Phys. A 338, 67 (1991).
21. G.G. Adamian, N.V. Antonenko, W. Scheid, In: Christian Beck (Ed.), Clusters in Nuclei, vol. 2, in: Lect. Notes, Phys., vol. 848, Springer-Verlag, Berlin, 165 (2012).
22. H. Pasca, et al, Extraction of potential energy in charge asymmetry coordinate from experimental fission data, Eur. Phys. J. A. 52, 369 (2016).
23. A.V. Andreev, et al, Possible explanation of fine structures in mass-energy distribution of fission fragments, Eur. Phys. J. A 22, 51 (2004).
24. Ch. Straede, C. Budtz-Jørgensen, H-H. Knitter, 235U (n, f) fragment mass-, kinetic energy-and angular distributions for incident neutron energies between thermal and 6 MeV, Nuclear Physics, A 462 (1), 85-108 (1987).
25. M. Jamiaty, Kinetic Energy Distribution for Neutron-induced fission of Thorium Isotopes, Physics of Atomic Nuclei, 83 (6), 803 (2020).
26. J. Blocki, W.J. Swiatecki, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
27. J. Blocki, et al, Proximity forces, Ann. Phys. NY 105, 427 (1977).
28. P. Mehdipour K, Kinetic Energy Distribution for Photofission of light Actinides, Phy. Rev, C 102 044612 (2020).
29. V. Yu. Denisov, T.O. Margitych, I.Yu. Sedykh, Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220, Nucl. Phys. A, 958, 101-128 (2017).
30. C. Karthika, M. Balasubramaniam, Scission point model for the mass distribution of ternary fission, Eur. Phys. J. A 55, 59 (2019).
31. J. Blocki, et al, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
32. K.R. Vijayaraghavan, M. Balasubramaniam, W. Von Oertzen, Collinear versus triangular geometry: A ternary fission study, Phys. Rev. C 90, 024601 (2014).
33. J. Blocki, W.J. Swiatecki, C.F. Tsang, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
34. H. Umezawa, S. Baba, H. Baba, Systematic behaviour of the most probable charge in the medium-energy fission, Nucl. Phys. A. 160 (1), 65-98 (1970).
35. N. Sugarman, A. Turkevich, Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman McGraw-Hill, New York, 1951 (3), 1396.
36. H.W. Schmitt, J.H. Neiler, F.J. Walter, Fragment Energy Correlation Measurements for 252Cf Spontaneous Fission and 235U Thermal-Neutron Fission, Physical Review, 141, 1146 (1966).
37. K. Nishio, et al, Multi-parametric Measurement of Prompt Neutrons and Fission Fragments for U(nth, f), Journal of Nuclear Science and Technology, 35(9), 631-642 (1998).
38. R. Vandenbosch, Dependence of fission fragment kinetic energies and neutron yields on nuclear structure, Nuclear Physics, 46, 129 (1963).
39. J.P. Unik, et al, Proc. Third Symp. on physics and chemistry of fission, Rochester, 1973, {textbf 2} 19 (IAEA, Vienna, 1974 (International Atomic Energy Agency (IAEA): RN:45029055).
40. EXFOR Experimental Nuclear Reaction Data Base (2017), http://www-nds.iaea.org/EXFOR.