نوع مقاله : مقاله فنی

نویسنده

گروه فیزیک، دانشکده علوم پایه، واحد نراق، دانشگاه آزاد اسلامی، صندوق پستی: 37961-58719، نراق - ایران

چکیده

در این پژوهش مقادیر انرژی جنبشی کل (TKE) پاره‌­های شکافت نوترونی ایزوتوپ‌­های پلوتونیوم با کمک مدل نقطه برشی محاسبه شده­‌اند. نتایج به ­دست آمده با نتایج تجربی مقایسه شده تا پارامترهای موردنیاز در مدل نقطه برشی به­ دست آیند. بدین­ منظور، انرژی جنبشی کل پاره­‌های شکافت Pu39، Pu241 و Pu242 که دارای مقادیر تجربی هستند، بررسی شده‌­اند. مقادیر انرژی جنبشی کل پاره­‌های شکافت دیگر ایزوتوپ‌­های پلوتونیوم با کمک مقادیر پارامترهای به ­دست آمده در مدل نقطه برشی حدس زده شده‌­اند. با کمک نتایج پارامترهای تغییر شکل پاره­‌های شکافت به‌ دست آمده، متوسط انرژی جنبشی کل پاره­‌های شکافت سایر بقیه ایزوتوپ­‌های پلوتونیوم محاسبه شده است. بیش‌­ترین مقدار متوسط انرژی جنبشی کل پاره‌­های شکافت برای ایزوتوپ­‌های پلوتونیوم در حدود MeV 185 است.

کلیدواژه‌ها

عنوان مقاله [English]

Calculation of the total kinetic energy distributions for neutron fission of plutonium isotopes

نویسنده [English]

  • M. Jamiati

Department of Physics, Faculty of Basic Sciences, Naragh Branch, Islamic Azad University, P.O. Box: 58719-37961, Naragh - Iran

چکیده [English]

In the present study, the total kinetic energy (TKE) values of neutron fission fragments of plutonium isotopes were calculated using the scission point model. The deformation parameters were obtained for neutron fission of plutonium 239, 241, and 242 by comparing the calculated results with experiments in the scission point model. TKE values were evaluated for neutron fission of other plutonium isotopes with these deformation parameters. Using the results of the fission deformation parameters, the average kinetic energy of all neutron fission fragments for the rest of the plutonium isotopes is calculated. The maximum average kinetic energy of all neutron fission fragments for plutonium isotopes is 185 MeV.

کلیدواژه‌ها [English]

  • Total kinetic energy
  • Scission point model
  • Neutron fission
  • Energy distribution of fission fragments
1. W. Lang, et al, Nuclear charge and mass yields for 235U(nth, f) as a function of the kinetic energy of the fission products, Nucl. Phys. A 345, 34 (1980).
 
2. F.J. Hambsch, et al, Fission mode fluctuations in the resonances of 235U(n,f), Nucl. Phys. A 491, 56 (1989).
 
3. R. Hentzschel, et al, Mass, charge and energy distributions in the very asymmetric fission of 249Cf induced by thermal neutrons, Nucl. Phys. A 571, 427 (1994).
 
4. Yu.V. Pyatkov, et al, Manifestation of fine structures in the fission fragment mass-energy distribution of the 233U(nth,f), Nucl. Instrum. Methods, A 488, 381 (2002).
 
5. L. Dematte, et al, Fragments' mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu, Nucl. Phys. A 617, 331 (1997).
 
6. V.G. Vorob`yeva, et al, Mass yields and kinetic energy of fragments for fission of plutonium isotopes, Conf. on Neutron Physics, Kiev 1973, 3, 270 (1973).
 
7. H. Thierens, et al, Fragment Mass and Kinetic Energy Distributions for 242Pu(sf), 241Pu(n(th),f), and 242Pu(γ,f), Physical Review, Part C, Nuclear Physics, 29, 498 (1984).
 
8. K. Nishio, et al, Measurement of Fragment Mass Dependent Kinetic Energy and Neutron Multiplicity for Thermal Neutron Induced Fission of Plutonium-239, J. of Nuclear Science and Technology, 32, 404 (1995).
 
9. E. Allaert, et al, Energy and mass distributions for 241Pu (nth, f), 242Pu (sf) and 244Pu (sf) fragments, Nuclear Physics, A 380 (1), 61-71 (1982).
 
10. H. Thierens, et al, Kinetic energy and fragment mass distributions for Pu 240 (sf), Pu 239 (n th, f), and Pu 240 (γ, f), Physical Review, C 23 (5), 2104 (1981).
 
11. P. Schillebeeckx, et al, Comparative study of the fragments' mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu, Nuclear Physics, A 545 (3), 623-645 (1992).
 
12. Chemey, Alexander, et al, Total kinetic energy and mass yields from the fast neutron-induced fission of 239Pu, The European Physical Journal, A 56 (11),
1-13 (2020).
 
13. F. Caitucoli, et al, Mass and energy characteristics of the 241Pu (nth, f) fragments, Nuclear Physics, A 369 (1), 15-24 (1981).
 
14. M. Asghar, et al, Fission Fragment Energy Correlation Measurements for the Thermal Neutron Fission of 239Pu and 235U, Nuclear Physics, Section A, 311, 205 (1978) DOI: 10.1016/0375-9474(78)90510.
 
15. C. Tsuchiya, et al, Simultaneous Measurement of Prompt Neutrons and Fission Fragments for 239Pu(nth,f), J. of Nuclear Science and Technology, 37, Issue.11, 941 (2000). DOI: 10.3327/jnst.37.941.
 
16. A. Göök, et al, Correlated mass, energy, and angular distributions from bremsstrahlung-induced fission of  234U and 232Th in the energy region of the fission barrier, Phys. Rev. C 96, 044301 (2017).
 
17. M.D. Usang, et al, Correlated transitions in TKE and mass distributions of _ssion fragments described by 4-D Langevin equation, Scienti_c Reports, 9(1), 1-9 (2019).
 
18. M. Albertsson, et al, Correlation studies of fission-fragment neutron multiplicities, Physical Review, C 103 (1), 014609 (2021).
 
19. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects, Phys. Rev. C 14 (5), 1832-1863 (1976).
 
20. A. Ruben, H. Marten, D. Seeliger, Energy partition in nuclear fission, Z. Phys. A 338, 67 (1991).
 
21. G.G. Adamian, N.V. Antonenko, W. Scheid, In: Christian Beck (Ed.), Clusters in Nuclei, vol. 2, in: Lect. Notes, Phys., vol. 848, Springer-Verlag, Berlin, 165 (2012).
 
22. H. Pasca, et al, Extraction of potential energy in charge asymmetry coordinate from experimental fission data, Eur. Phys. J. A. 52, 369 (2016).
 
23. A.V. Andreev, et al, Possible explanation of fine structures in mass-energy distribution of fission fragments, Eur. Phys. J. A 22, 51 (2004).
 
24. Ch. Straede, C. Budtz-Jørgensen, H-H. Knitter, 235U (n, f) fragment mass-, kinetic energy-and angular distributions for incident neutron energies between thermal and 6 MeV, Nuclear Physics, A 462 (1), 85-108 (1987).
 
25. M. Jamiaty, Kinetic Energy Distribution for Neutron-induced fission of Thorium Isotopes, Physics of Atomic Nuclei,  83 (6), 803 (2020).
 
26. J. Blocki, W.J. Swiatecki, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
 
27. J. Blocki, et al, Proximity forces, Ann. Phys. NY 105, 427 (1977).
 
28. P. Mehdipour K, Kinetic Energy Distribution for Photofission of light Actinides, Phy. Rev, C 102 044612 (2020). 
 
29. V. Yu. Denisov, T.O. Margitych, I.Yu. Sedykh, Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220, Nucl. Phys. A, 958, 101-128 (2017).
 
30. C. Karthika, M. Balasubramaniam, Scission point model for the mass distribution of ternary fission, Eur. Phys. J. A 55, 59 (2019).
 
31. J. Blocki, et al, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
 
32. K.R. Vijayaraghavan, M. Balasubramaniam, W. Von Oertzen, Collinear versus triangular geometry: A ternary fission study, Phys. Rev. C 90, 024601 (2014).
 
33. J. Blocki, W.J. Swiatecki, C.F. Tsang, A generalization of the Proximity Force Theorem, Ann. Phys. NY 132, 53 (1981).
 
34. H. Umezawa, S. Baba, H. Baba, Systematic behaviour of the most probable charge in the medium-energy fission, Nucl. Phys. A. 160 (1), 65-98 (1970).
 
35. N. Sugarman, A. Turkevich, Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman McGraw-Hill, New York, 1951 (3),  1396.
 
36. H.W. Schmitt, J.H. Neiler, F.J. Walter, Fragment Energy Correlation Measurements for 252Cf Spontaneous Fission and 235U Thermal-Neutron Fission, Physical Review, 141, 1146 (1966).
 
37. K. Nishio, et al, Multi-parametric Measurement of Prompt Neutrons and Fission Fragments for U(nth, f), Journal of Nuclear Science and Technology, 35(9), 631-642 (1998).
 
38. R. Vandenbosch, Dependence of fission fragment kinetic energies and neutron yields on nuclear structure, Nuclear Physics, 46, 129 (1963).
 
39. J.P. Unik, et al, Proc. Third Symp. on physics and chemistry of fission, Rochester, 1973, {textbf 2}  19 (IAEA, Vienna, 1974 (International Atomic Energy Agency (IAEA): RN:45029055).
 
40. EXFOR Experimental Nuclear Reaction Data Base (2017), http://www-nds.iaea.org/EXFOR.