نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی‌ رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

2 گروه شیمی، دانشکده علوم، دانشگاه آزاد اسلامی واحد شهرضا، کدپستی: 8648146411، شهرضا - ایران

چکیده

در تحقیق حاضر نانوذرات هیدروکسی آپاتیت مغناطیسی (/HAp 4O3Fe) به منظور جذب و حذف یون‌های اورانیل برای اولین بار به روش هم­رسوبی تهیه شدند. برای این کار جاذب‌هایی با نسبت‌‌های وزنی متفاوت (/HAp 4O3Fe)، (1:1)، (1:2)، (1:3) و (1:5) تهیه شدند. پس از مشخصه‌یابی فیزیکی، شیمیایی و مغناطیسی توانایی آن‌ها در جذب یون اورانیل از طریق سنجش اورانیل به روش طیف­سنجی جذب ماوراء بنفش - مریی با استفاده از عامل کمپلکس‌کننده آرسنازو (III) پی‌گیری شد. اثر پارامترهای تجزیه‌‌ای از قبیل دما، pH، مدت تماس، مقدار جاذب، غلظت محلول اورانیل و اثر مزاحمت سایر کاتیون‌‌ها بر میزان جذب اورانیل توسط جاذب بررسی شد. آزمایشات نشان داد مقدار 015/0 گرم از نمونه /HAp 4O3Fe (1:5)، در 7 pH و در مدت زمان 150 دقیقه بیش‌ترین میزان اورانیل را جذب و حذف می‌کند. نانوذرات تهیه شده در ابعاد nm 17±2، قادر به جذب اورانیل در غلظت بینppm  100-2/0 بوده و بیش از 96‌% اورانیل را حذف ‌می‌نمایند. در دمای C˚ 25 ظرفیت جذب mg/g 82/99 به دست آمد. نتایج حاصله توانایی بالای این نانوذرات در جذب و حذف اورانیل و پتانسیل بالای آن‌ها در تصفیه پساب‌های حاوی اورانیل، را نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Magnetically assisted uranyl removal by using magnetic hydroxyapatite nanocomposite

نویسندگان [English]

  • M. Bagherzadeh 1
  • D. Saberi 2

1 1. Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran - Iran

2 Department of Chemistry, Faculty of Science, Islamic Azad University of Shahreza, Postal Code: 8648146411, Shahreza - Iran

چکیده [English]

Magnetic hydroxyapatite nanoparticles (Fe3O4/HAP) are prepared in the present work to remove uranyl ions via copercipitation method for the first time. The sorbent was prepared with the weight ratio of magnetic nanoparticles to hydroxyapatite (Fe3O4/HAP) as (1:1), (1:2), (1:3), and (1:5). After finding physical, chemical, and magnetic features, their ability to absorb uranyl ions was examined via UV-Vis method, measuring the absorbance of element complex with arsenazo (III). The effects of parameters such as temperature, pH, contact time, rate of the adsorbent, the concentration of uranyl, and the effects of interference of other ions on the removal of uranyl were analyzed. Also, the experiments showed that the highest rate of uranyl was absorbed by using 0.015 g Fe3O4/HAP (1:5) during 150 min at pH equal to 7. The prepared nanoparticles in 17±2 nm could absorb uranyl in the concentration range of 0.2-100 ppm, eliminating over 96% of uranyl. The absorbing capability of 99.82 mg/g was obtained at 25°C. The results indicate the high potential of the prepared nano-particles in absorbing and eliminating uranyl and show its capability in the waste water containing uranyl.

کلیدواژه‌ها [English]

  • Uranyl
  • Magnetic nanoparticles
  • Hydroxyapatite
1.             S. Yusan, S. Akyil, Sorption of uranium (VI) from aqueous solutions by akaganeite, J. Hazard. Mater., 160, 388-395 (2008).
 
2. W. Shi, et al., Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite, J. Hazard. Mater., 170, 1-6 (2009).
 
3. M.E. Argun, S. Dursun, A new approach to modification of natural adsorbent for heavy metal adsorption, Bioresource Technol., 99, 2516-2527 (2008).
 
4. Sh. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156, 11-24 (2010).
 
5. N. Rajic, et al., Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite, Appl. Surf. Sci., 257, 1524-1532 (2010).
 
6. F.L. Fan, et al. Rapid removal of uranium from aqueous using magnetic Fe3O4@SiO2 composite particles, J. Environ. Radioact., 106, 40-46 (2012).
 
7. J.L. Lapka, et al., Extraction of uranium (VI) with diamides of dipicolinic acid from nitric acid solutions, Radiochim. Acta., 97, 291-296 (20009).
 
8. A.D. Browski, et al., Selective removal of the heavy metal ions from waters and industrial waste waters by ion-exchange method, Chemosphere., 56, 91-106 (2004).
 
9. A. Bhatnagar, A.K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloid. Surface. B., 76,  544-548 (2010).
 
10. J. Peric, M. Trgo, N.V. Medvidovi, Removal of zinc, copper and lead by natural zeolite a comparison of adsorption isotherms, Water Res., 38, 1893-1899 (2004).
 
11. V.J. Inglezakis, et al., Pretreatment of natural clinoptilolite in a laboratory-scale ion exchange packed bed, Water Res., 35, 2161-2166 (2001).
 
12. V.J. Inglezakis, S.G. Poulopoulos, Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications, (Elsevier, Netherland, 2006).
 
13. W. Xiong, et al., Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite, J. Colloid Interf. Sci., 368, 528-532 (2012).
 
14. D. Mehta, et al., Magnetic adsorbents for the treatment of water/wastewater—a review, J. Water Process. Eng., 7, 244–265 (2015).
 
15. Z. Zhang, et al., Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixedbed column studies, Chem. Eng. J., 370, 1376-1387 (2019).
 
16. X. Han, et al., Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution, Appl. Surf. Sci., 484, 1035–1040 (2019).
 
17. E. Skwarek, et al., Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions, Adsorption, 25(3), 639–647 (2019).
 
18. Y. Wu, et al., Rapid and effective removal of uranium(VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres, J. Hazard. Mater., 371, 397–405 (2019).
 
19. M. Bagherzadeh, et al., Electrochemical evaluation and surface study of magnetite/PANI nanocomposite for carbon steel protection in 3.5% NaCl, Prog. Org. Coat., 101, 149-160 (2016).
 
20. M. Bagherzadeh, et al., Electrochemical detection of Pb and Cu by using DTPA functionalized magnetic nanoparticles, Electrochim. Acta., 115, 573-580 (2014).
 
21. S.A. Milani, Solid Phase Extraction of Thorium (IV) and Uranium (VI) from Nitrate Medium Using Cyanex 302-Coated Magnetic Nanoparticles, J. Nucl. Sci. Tech., 78, 70-76 (2017).
 
22. S.A. Milani, et al. Adsorptive remval of heavy metals from Esfahan uranium conversion facility (UCF) wastewater by bagass impregnated with magnetic nanoparticles, J. Nucl. Sci. Tech., 71, 33-43 (2015).
 
23. M. Bagherzadeh, et al. Decoration of Fe3O4 magnetic nanoparticles on graphene oxide nanosheets, RSC Advances, 5(128), 105499-105506 (2015).
 
24. F. Riahi, et al., Modification of Fe3O4 superparamagnetic nanoparticles with zirconium oxide; preparation, characterization and its application toward fluoride removal, RSC Advances, 5(88), 72058-72068 (2015).
 
25. D. Zeng, et al., Magnetic solid‑phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite, J. Radioanal. Nucl. Chem., 324(3), 1329–1337 (2020).
 
26. L. Dong, et al., Removal of lead from aqueous solution by HAP/magnetite composite adsorbent, Chem. Engin. J., 165, 827-834 (2010).
 
27. J.L. Gong, et al., Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent, Chem. Eng. J., 185, 100– 107 (2012).
 
28. D. Luna-Zaragoza, at al., Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite Ca5 (PO4)3OH, J. Min. Mat. Charact. Engin., 8, 591-609 (2009).
 
29. L. Wu, et al., Surface complexation of calcium minerals in aqueous solution. 1. Surface protonation of fluorapatite–water interfaces, J. Coll. Interface Sci., 147, 178-185 (1991).
 
30. G.H. Wang, et al., Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan, J. Hazard. Mater., 168, 1053–1058 (2009).
 
31. S. Abdi, et al., Investigation of uranium (VI) adsorption by polypyrrole, J. Hazard. Mater., 332, 132-139 (2017).
32. S.B. Xie, et al., Removal of uranium(VI) from aqueous solution by adsorption of hematite, J. Environ. Radioact., 100, 162–166 (2009).
 
33. E.R. Sylwester, et al., The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite, Geochim. Cosmochim. Acta, 64, (2000) 2431–2438.
 
34. F.L. Fan, et al., Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles, J. Environ. Radioact., 106, 40–46 (2012).
 
35. P.F. Zong, et al., Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions, Chem. Eng. J., 220, 45-52 (2013).