نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فنون هسته ای- پژوهشکده چرخه سوخت هسته ای

2 عضو هیئت علمی پژوهشگاه علوم وفنون هسته ای

چکیده

دو کانسار فسفریت پاقلعه و گدوک در سازند جیرود (دونین بالایی) در شمال شرق فیروزکوه در حوزه البرز مرکزی مورد مطالعه قرار گرفت. مطالعات میکروسکوپی نشان داد که فلوئورآپاتیت کانی اصلی فسفاته به همراه باطله‌های اصلی کلسیت و کوارتز است. میزان P2O5، اورانیوم و ΣREE در فسفریت پاقلعه به ترتیب در محدوده 5/35 تا %2/41، 8/4 تا 4/6 و 623 تا 2/803 پی‌پی‌ام و در گدوک در محدوده 3/12 تا %1/41، 7/4 تا 8/7 و 2/369 تا 8/784 پی‌پی‌ام متغیر است. الگوی عناصر نادر خاکی بهنجارشده فسفریت‌های فیروزکوه نسبت به ترکیب شیل پساآرکئن استرالیا، الگوی محدب بدون ناهنجاری مشخص سریم را نشان می‌دهدکه بیانگر وجود شرایط فاقد اکسیژن در محیط دیاژنزی تشکیل فسفریت‌ است. مطالعات کانی‌شناسی، زمین‌شیمی و همبستگی مثبت REEها با P2O5 و CaO نشان می‌دهد که کانی فلوئور آپاتیت میزبان اصلی REE در فسفریت‌های فیروزکوه است. عدم غنی‌شدگی اورانیوم در فسفریت‌های فیروزکوه احتمالاً به دلیل عدم وجود سنگ منشأ مناسب دارای اورانیوم قابل آبشویی در خشکی بوده است یا اینکه عدم غنی‌شدگی اورانیوم می‌تواند ناشی از شرایط اکسیدان ضعیف اولیه طی فسفات‌زایی باشد که مانع از تبدیل U+6 محلول در آب دریا به U+4 شده است و اورانیوم نتوانسته جانشین کلسیم در شبکه آپاتیت شود.

کلیدواژه‌ها

عنوان مقاله [English]

Geochemistry of uranium and rare earth elements in the phosphate Horizon of Jeiroud formation, Firoozkuh area, Central Alborz zone

نویسندگان [English]

  • Samaneh Ziapour 1
  • Khalegh Khoshnoodi 2

1 Nuclear Fuel Cycle Research School,- Nuclear Science and Technology Research Institute

2 Nuclear fuel cycle research school, Nuclear science and technology research institute.

چکیده [English]

Two phosphorite deposits including Paghela and Gadok, within the Jiroud Formation (Upper Devonian) in the northeast of Firoozkuh in the Central Alborz geotectonic zone have been studied. Microscope studies show that fluorapatite is the main phosphate mineral and the main gangue minerals are calcite and quartz. The P2O5, Uranium and ∑REE contents in the Paghaleh phosphorite range between 35.5-41.2%, 4.8-6.4 and 623-803.2 ppm, and in the Gaduk phosphorite vary from 12.3 to 41.1%, 4.7 to 7.8 and 369.2 to 784.8 ppm, respectively. The REE patterns normalized to Post-Archean Australian shales in Firoozkuh phosphorites are characterized by convex patterns without specific Ce anomaly, which indicates anoxic conditions in the diagenesis environment of the phosphorite formation. Mineralogical and geochemical studies and the positive correlation of REEs with P2O5 and CaO show that the main host mineral of rare earth elements in the phosphorites of Firoozkuh is fluorapatite. Also, minor amount of zircon and trace amount of monazite inclusions in the apatite are other minerals that host rare earth elements in these phosphorites. The lack of uranium enrichment in Firoozkuh phosphorites is probably either due to the lack of favorable source rock with leachable uranium in the continent, or by the initial weak oxidant conditions during phosphatization, which prevented the conversion of U+6 dissolved in seawater to U+4, and uranium could not replace Ca within the apatite lattice.

کلیدواژه‌ها [English]

  • Firoozkuh phosphorite
  • Fluorapatite
  • U
  • REE
  • Jeiroud Formation
  • Central Alborz
  1. Guilbert J.M, Park C.F. The Geology of Ore Deposits. 1st ed. (Waveland Press, Inc, New York. 1986).

 

  1. Cathcart J.B. Uranium in Phosphate rock. 1st ed. (Geological Survey Professional Paper 988-A, U.S. Geological Survey, Washington. 1978).

 

  1. Altschuler Z.S. The geochemistry of trace elements in marine phosphorites: Part 1, characteristic abundances and enrichment. Spec. Publ. SEPM. 1980;29:19.

 

  1. Baturin G.N, Kochenov A.V. Uranium in phosphorites. Lithol. Miner. Resour. 2001;36(4):303.

 

  1. Jiang S.Y, Zhao H.X, Chen Y.Q, Yang T, Yang J.H, Ling H.F. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing. Jiangsu Province, China, Chem. Geol. 2007;244:584.

 

  1. Abed A.M, Sadaqah R.M. Enrichment of uranium in the uppermost Al-Hisa Phosphorite Formation. Eshidiyya Basin. Southern Jordan. J. Afr. Earth. Sci. 2013;77:31.

 

  1. Schnug E, Haneklaus N. Uranium, the hidden treasure in phosphates. Procedia Eng. 2014;83:265.

 

  1. Abedini A, Calagari A.A. REEs geochemical characteristics of lower Cambrian phosphatic rocks in the Gorgan-Rasht Zone, northern Iran: implications for diagenetic effects and depositional conditions. J. Afr. Earth Sci. 2017;135:115.

 

  1. Kechiched R, Laouar R, Bruguier O, Salmi-Laouar S, Kocsis L, Bosch D, Foufou A, Ameur-Zaimeche O, Larit H. Glauconite-bearing sedimentary phosphorites from the Tébessa region (eastern Algeria): evidence of REE enrichment and geochemical constraints on their origin. J. Afr. Earth Sci. 2018;145:190.

 

  1. Dill H.G. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Sci. Rev. 2001;53:35.

 

  1. Halalat H, Bolourchi M.H. Geology of Iran: Phosphate. 1st ed. (Geological Survey and Mineral Exploration of Iran, Tehran. 1994) [In Persian].

 

  1. Ghorbani M. The Economic Geology of Iran-Mineral Deposits and Natural Resources. 1st ed. (Springer, New York. 2013).

 

  1. Orris G.J, Dunlap P, Wallis J.C. Phosphate occurrence and potential in the region of Afghanistan, including parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. U.S. Geological Survey Open-File Report. 2015;1121:1.

 

  1. Namadmalian A, Okhovat Z, Momenzadeh M. Phosphate in Iran. 1st ed. (Geological Survey and Mineral Exploration of Iran, Tehran. 1998) [In Persian].

 

  1. Cheshmehsari M, Abedini A, Alizadeh A, Mousavi S.M. Mineralogy and geochemistry of rare earth elements at the Dalir phosphatic horizon (SW of Chalous, Mazandaran province). J. Econ. Geol. 2013;4:319 [In Persian].

 

  1. Salama W, Khirekesh Z, Amini A, Shafiei Bafti B. Diagenetic evolution of the upper Devonian phosphorites. Alborz Mountain Range. Northern Iran. Sediment. Geol. 2018;376:90.

 

  1. Khoshnoodi K, Ziapour S. in: Geochemical and Mineralogical Characterization of Uranium and Thorium Deposits. Edited by IAEA (IAEA, Vienna). 2020;93-124.

 

  1. Khoshnoodi K, Ziapour S. Geochemistry of uranium and REEs in Dalir phosphate deposit. Central Alborz zone. JONSAT. 2022;44:148 [In Persian].

 

  1. Khoshnoodi K, Ziapour S. Uranium and rare earth elements in the phosphate deposits of the Pabdeh Formation. Zagros Zone. Iran: concentrations and geochemical patterns comparison. Environ. Earth Sci. 2022;81:1.

 

  1. Yazdi M, Najafi M, Khoshnoodi K, Behzadi M. Mineralogy of rare earth elements of the Jeirud phosphorites. western Alborz. Journal of New Findings in Applied Geology. 2021;29:32 [In Persian].

 

  1. Moghaddasi J. Mineralogy and rare earth elements geochemistry of Jeirud phosphate deposit in Shemshak valley in north Tehran. Geosciences. Scientific Quarterly Journal. 2016;102:313 [In Persian].

 

  1. Taylor S.R, McLennan S.M. The Continental Crust: Its Composition and Evolution. 1st ed. (Blackwell, Oxford. 1985).

 

  1. McArthur J.M. Francolite geochemistry and compositional controls during formation, diagenesis, metamorphism and weathering. Geochem, Cosmochim, Acta. 1985;49:23.

 

  1. McClellan G.H, Van Kauwenbergh S.J. Mineralogy of sedimentary apatites. Geol. Soc. Lond. 1990;52:23.

 

  1. Awadalla G.S. Geochemistry and microprobe investigations of Abu Tartur REE-bearing phosphorite. Western Desert, Egypt, Afr. Earth Sci. 2010;57:431.

 

  1. Dahlkamp F.J. Uranium Ore Deposits. 1st ed. (Springer- Verlag, Berlin. 1993).

 

  1. Kochenov A.V, Baturin G.N. The paragenesis of organic matter, phosphorus, and uranium in marine sediments. Lithol. Miner. Resour. 2002;37(2):107.

 

  1. Lucas J, Abbas M. Uranium in natural phosphorites: Syrian example. Bull. Sci. Geol. Strasbourg. 1989;42:223.

 

  1. Bremner J.M. Brief Description of a West-Coast Phosphorite Deposit (Report of Geological Survey of South Africa, 0100, South Africa. 1992).

 

  1. Titayeva N.A. Nuclear Geochemistry. 1st ed. (CRC Press, Florida. 1994).

 

  1. Ostrovskaya G.Y. Uranium in rocks of phosphorite-bearing formations. Sov. At. Energy. 1974;36:189.

 

  1. Kohansal Ghadimvand N, Mandalzadeh R. Depositional environment and sequence stratigraphy of Jeiroud Formation in the southern flank of Aynehvarzan- Dalichai anticline. East of Damavand (Central Alborz). Journal of the Earth. 2088;3(3):37 [In Persian].

 

  1. Zeebe R.E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Reviews Earth Planet Sci. 2012;40:141.

 

  1. Kazemi M, Shafiei B, Shamanian G, Amini A. 31th Conference of Earth Science (Geological Survey and Mineral Exploration of Iran, Tehran). 2012;1-8 [In Persian].

 

  1. Morad S, Felitsyn S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sediment. Geol. 2001;143:259.

 

  1. Bau M, Dulski P. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations. Transvaal Supergroup. South Africa. Precambrian Res. 1996;79:37.

 

  1. Reynard B, Lecuyer C, Grandjean P. Crystal-chemical controls on rare earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 1999;155:233.

 

  1. Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001;175:29.

 

  1. Wright J, Schrader H, Holser W.T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta. 1987;51:631.

 

  1. Elderfield H, Greaves M.J. The rare earth elements in seawater. Nature. 1982;296:214.

 

  1. Xin H, Jiang S.Y, Yang J.H, Wu H.P, Pi D.H, Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from Western Hubei Province. South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015;440:712.

 

  1. Xin H, Jiang S, Yang J, Wu H, Pi D. Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area. South China. J. Earth Sci. 2016;27:204.

 

  1. Kidder D, Krishnaswamy R, Mapes R.H. Elemental mobility in phosphatic shales during concretion growth and implication for provenance analysis. Chem. Geol. 2003;198:335.

 

  1. Simandl G.J, Paradis S, Fajber R. Sedimentary Phosphate Deposits. 1st ed. (British Columbia Ministry of Energy, Mines and Petroleum Resources. 2012).

 

  1. Nriagu J.O, Moore P.B. Phosphate Minerals. 1st ed. (Springer, Berlin. 1984).

 

  1. Li Y, Schieber J. On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee-a combined sedimentologic, petrographic, and geochemical study. Sediment. Geol. 2015;329:40.

 

  1. Shields G.A, Webb G.E. Has the REE composition of seawater changed over geological time?. Chem. Geol. 2004;204:103.

 

  1. Zhao L, Chen Z.Q, Algeo T.J, Chen J, Chen Y, Tong J, Gao S, Zhou L, Hu Z, Liu Y. Rare-earth element patterns in Conodont Albid Crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis?. Glob. Planet. Change. 2013;105:135.

 

  1. Gamal S.A. Geochemistry and microprobe investigations of Abu Tartur REE-bearing phosphorite. Western Desert, Egypt, J. Afr. Earth Sci. 2010;57:431.

 

  1. Baioumy H.M. Effect of the depositional environment on the compositional variations among the phosphorite deposits in Egypt. Russ. Geol. Geophys. 2013;54:454.