نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک و فوتونیک، دانشگاه ملایر، صندوق پستی: 84621-65741، ملایر- ایران

2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 51113-14399، تهران- ایران

چکیده

در این مقاله، سازوکار برهم‌کنش تک‌پالس تجمیعی و دو پالس متقابل لیزر، که دامنه میدان کل با نسبت‌های مختلفی بین دو پالس تقسیم شده است، با پلاسمای با چگالی نزدیک بحرانی، با استفاده از شبیه‌سازی 1D3V ذره در سلول بررسی می‌شود. به‌خصوص، وابستگی ویژگی‌های اصلی دسته فوتون‌های گسیلی به چگونگی تسهیم دامنه میدان بررسی و با حالت متداول تک‌پالس تجمیعی مقایسه می‌گردد. در حالت برهم‌کنش پالس‌‏های متقابل، به‌دلیل پدیده پراکندگی غیرخطی کامپتون معکوس، بیشترین میزان فوتون در لحظات برخورد دو پالس با هم گسیل می‌گردد. میزان جهت‌مندی فوتون‌های گسیل شده در راستای انتشار پالس/پالس‌ها، در حالت پالس‌های متقابل همسان در حالت حداکثر و در حالت پالس مجموع به حداقل می‏‌رسد، و هر چه اختلاف تسهیم میدان‌ها بیشتر باشد به حالت تک‌پالس تجمیعی نزدیک‌تر است. این در حالی‌ست که، بزرگ‌ترین انرژی قطع الکترونی، گسیلنده‌ها، به ترتیب متعلق به حالت پالس‏‌های متقابل لیزر با نسبت‌های میدان 0/9: 0/1 و 0/8: 0/2 است و حالت 0/5: 0/5 کمترین مقدار را دارد. در لحظه‌ای که چگالی فوتون‌های گسیل شده بیشینه است، بزرگ‌ترین انرژی قطع فوتون‌ها به حالت پالس‌های متقابل 0/9: و 0/1 تعلق دارد. همچنین، انرژی جذب شده توسط الکترون‌ها و فوتون‌ها نسبت مستقیمی با انرژی الکترومغناطیس تزریق شده به سیستم دارد که در حالت تک‌پالس بیشترین مقدار را دارد ولی میزان کل تابش الکترومغناطیس در حالت دو پالس متقابل بیشترین مقدار را دارا است. نتایج این تحقیق می‌تواند در بهینه‌سازی گسیل فوتون در برهم‌کنش لیزرهای فوق پرتوان با پلاسما، به اهداف کاربردی، مفید واقع گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Photon emission in counter-propagating laser pulses with different field ratios interact with near critical density plasma

نویسندگان [English]

  • Z. Rostami 1
  • M. Pishdast 2
  • J. Yazdanpanah 2
  • M. Rezvani Jalal 1

1 Department of Physics and Photonics, Malayer University, P.O. Box: 65741-84621, Malayer – Iran

2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran – Iran

چکیده [English]

This paper investigates the interaction mechanism of a single collective laser pulse and two counter-propagating laser pulses (with the total field amplitude divided between them in varying ratios) with a near-critical density plasma using 1D3V Particle-in-Cell (PIC) simulations. The study focuses on the dependence of key properties of the emitted photon bunch on the amplitude ratio, comparing them with the single collective pulse scenario. For counter-propagating pulses, nonlinear inverse Compton scattering results in the maximum photon emission occurring early during the collision of the pulses. The directionality of emitted photons along the pulse propagation direction is highest for counter-propagating pulses and lowest for the single collective pulse. Larger differences in divided field amplitudes bring the results closer to those of a single collective pulse. The maximum electron energy cutoff and emitter number are observed for counter-propagating pulses with amplitude ratios of 0.9:0.1 and 0.8:0.2, respectively, while the ratio 0.5:0.5 shows minimal values. The peak photon density corresponds to the highest cutoff energy, observed for the 0.9:0.1 counter-propagating pulses. Furthermore, the total absorbed energy by electrons and photons directly correlates with the injected electromagnetic energy into the system, being highest for the single pulse scenario. However, the overall electromagnetic radiation emission is maximized for counter-propagating pulses. These findings provide insights valuable for optimizing high-power laser interactions with plasmas and their applications.

کلیدواژه‌ها [English]

  • Laser-plasma interaction
  • Photon radiation
  • Counter-propagating laser Pulses
  • Different filed ratios
  1. Kirk J.G, Bell A.R, Arka I. Pair production in counter-propagating laser beams. Plasma Physics and Controlled Fusion. 2009 Jul 21;51(8):085008.doi: 10.1088/0741-3335/51/8/085008.

 

  1. Exawatt Center for Extreme Light Studies. www.xcels.iapras.ru.

 

  1. Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Optics Express. 2008 Feb 4;16(3):2109-14.doi: 10.1364/OE.16.002109.

 

  1. Extreme Light Infrastructure European Project. www.eli laser.eu.

 

  1. Cros B, Paradkar B.S, Davoine X, Chancé A, Desforges F.G, Dobosz-Dufrénoy S, Delerue N, Ju J, Audet T.L, Maynard G, Lobet M. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2014 Mar 11;740:27-33. doi: 10.1016/j.nima.2013.10.090.

 

  1. SULF. http://siom.cas.cn.

 

  1. Luo W, Zhu Y.B, Zhuo H.B, Ma Y.Y, Song Y.M, Zhu Z.C, Wang X.D, Li X.H, Turcu I.C, Chen M. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Physics of Plasmas. 2015 Jun 1;22(6). doi: 10.1063/1.4923265.

 

  1. Pishdast M, Yazdanpanah J. High-energy photon emission and radiation reaction effects in the ultra-high intensity laser bubble regime. Physica Scripta. 2019 Apr 15;94(6):065601. doi: 10.1088/1402-4896/ab0b0c.

 

  1. Gu Y.J, Jirka M, Klimo O, Weber S. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations. Matter and Radiation at Extremes. 2019 Nov 1;4(6). doi: 10.1063/1.5098978.

 

  1. Vranic M, Klimo O, Korn G, Weber S. Multi-GeV electron-positron beam generation from laser-electron scattering. Scientific Reports. 2018 Mar 16;8(1):4702.doi: 10.1038/s41598-018-23126-7.

 

  1. Huang T.W, Kim C.M, Zhou C.T, Cho M.H, Nakajima K, Ryu C.M, Ruan S.C, Nam C.H. Highly efficient laser-driven Compton gamma-ray source. New Journal of Physics. 2019 Jan 9;21(1):013008. doi: 10.1088/1367-2630/aaf8c4.

 

  1. Mackenroth F, Di Piazza A. Nonlinear Compton scattering in ultrashort laser pulses. Physical Review A. 2011 Mar 9;83(3):032106. doi: 10.1103/ PhysRevA.83.032106.

 

  1. Zhao Y. Compact Gamma-ray Sources via Laser-Plasma Interaction. 2021 Aug 1; Student thesis: Phd.

 

  1. Li H.Z, Yu T.P, Hu L.X, Yin Y, Zou D.B, Liu J.X, Wang W.Q, Hu S, Shao F.Q. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target. Optics Express. 2017 Sep 4;25(18):21583-93. doi: 10.1364/OE.25.021583.

 

  1. Blackburn T.G. QED effects in laser-plasma interactions. PhD thesis, Oxford University, UK. 2015.

 

  1. Pishdast M, Yazdanpanah J, Ghasemi S.A. The effect of laser polarization on radiation reaction trapping of the electrons in ultra high power laser interaction with rarified plasma. Journal of Nuclear Science and Technology. 2022;98(1):72-79 [In Persian].

 

  1. Malka V, Faure J, Gauduel Y.A, Lefebvre E, Rousse A, Phuoc K.T. Principles and applications of compact laser–plasma accelerators. Nature Physics. 2008 Jun;4(6):447-53. doi: 10.1038/nphys966.

 

  1. Bamber C, Boege S.J, Koffas T, Kotseroglou T, Melissinos A.C, Meyerhofer D.D, Reis D.A, Ragg W, Bula C, McDonald K.T, Prebys E.J. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Physical Review D. 1999 Oct 8;60(9):092004. doi:10.1103/PhysRevD.60. 092004.

 

  1. Zhao Y, Liu J, Xia G, Bonatto A. Dense γ-ray emission in two consecutive pulses irradiating near critical density plasma. Plasma Physics and Controlled Fusion. 2022 Jul 7;64(8):085012. doi: 10.1088/1361-6587/ac77b5.

 

  1. Zhu X.L, Chen M, Weng S.M, Yu T.P, Wang W.M, He F, Sheng Z.M, McKenna P, Jaroszynski D.A, Zhang J. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator. Science Advances. 2020 May 29;6(22):eaaz7240. doi: 10.1126/sciadv. aaz7240.

 

  1. Heppe C, Kumar N. High brilliance γ-ray generation from the laser interaction in a carbon plasma channel. Frontiers in Physics. 2022:889. doi: 10.3389/fphy. 2022.987830.

 

  1. Li H.Z, Yu T.P, Liu J.J, Yin Y, Zhu X.L, Capdessus R, Pegoraro F, Sheng Z.M, McKenna P, Shao F.Q. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils. Scientific Reports. 2017 Dec 11;7(1):17312. doi: 10.1038/s41598-017-17605-6.

 

  1. Luo W, Liu W.Y, Yuan T, Chen M, Yu J.Y, Li F.Y, Del Sorbo D, Ridgers C.P, Sheng Z.M. QED cascade saturation in extreme high fields. Scientific Reports. 2018 May 30;8(1):8400. doi: 10.1038/s41598-018-26785-8.

 

  1. Rostami Z, Pishdast M, Rezvani Jalal M, Gholami Hatam E. Investigating high-energy photon emission in the interaction of single-pulse and two counterpropagating pulse ultra-power lasers with plasma. The 29th Iran Optic and Photonic conference and 15th Iran Photonics Engineering and technology Conference. Shiraz University of Technology, Iran. 2023;3:512-515 [In Persian].

 

  1. Zhu X.L, Yin Y, Yu T.P, Shao F.Q, Ge Z.Y, Wang W.Q, Liu J.J. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone. New Journal of Physics. 2015 May 22;17(5):053039. doi: 10.1088/1367-2630/17/5/053039.

 

  1. Zhu X.L, Yu T.P, Sheng Z.M, Yin Y, Turcu I.C, Pukhov A. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nature communications. 2016 Dec 14;7(1):13686. doi: 10.1038/ncomms13686.

 

  1. Vranic M, Klimo O, Korn G, Weber S. Multi-GeV electron-positron beam generation from laser-electron scattering. Sci Rep. 2018 March 16;8:4702. doi: 10.1038/s41598-018-23126-7.

 

  1. Vladisavlevici I.M, Vizman D, d’Humières E. Laser Driven Electron Acceleration from Near-Critical Density Targets towards the Generation of High Energy ϒ-Photons. Photonics. 2022 Dec 9;9(12):953. doi: 10.3390/photonics9120953.

 

  1. Liu J.X, Zhao Y, Wang X.P, Quan J.Z, Yu T.P, Zhang G.B, Yang X.H, Ma Y.Y, Shao F.Q, Zhao J. High-flux positrons generation via two counter-propagating laser pulses irradiating near-critical-density plasmas. Physics of Plasmas. 2018 Oct 1;25(10). doi: 10.1063/1.5043627.

 

  1. Günther M.M, Rosmej O.N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N.G, Pukhov A, Andreev N.E. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science. Nat Commun. 2022 Jan 10;13:170. doi: 10.1038/s41467-021-27694-7.

 

  1. Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J. Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Computer Physics Communications. 2018 Jan 1;222:351-73. doi: 10.1016/j.cpc.2017.09.024.

 

  1. Hosseinkhani H, Pishdast M, Yazdanpanah J, Ghasemi S.A. Investigation of the classical and quantum radiation reaction effect on interaction of ultra high power laser with near critical plasma. Journal of Nuclear Science and Technology (JonSat). 2021 Jun 22;42(2):27-35 [In Persian].

 

  1. He Y, Yeh I.L, Blackburn T.G, Arefiev A. A single-laser scheme for observation of linear Breit–Wheeler electron–positron pair creation. New Journal of Physics. 2021 Nov 2;23(11):115005. doi: 10.1088/ 1367-2630/ac3049.

 

  1. Yazdanpanah J. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory. Plasma Physics and Controlled Fusion. 2017 Dec 20;60(2):025014. doi: 10.1088/1361-6587/aa9805.

 

  1. Yazdanpanah J. Self modulation and scattering instability of a relativistic short laser pulse in an underdense plasma. Plasma Physics and Controlled Fusion. 2019 Jun 25;61(8):085021. doi: 10.1088/ 1361-6587/ab2733.