نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

برای جداسازی انتخابی یون‌های اورانیم (VI) از آهن (III)، عملکرد سه غشای نانوفیلتر تجاری (2-NF-1 ،PES و 2-NF) از نظر میزان، شدت جریان عبوری و گزینش‌گری تحت شرایط عملیاتی مختلف ارزیابی شد. با افزایش pH از 3 تا 6، شدت جریان عبوری از غشاها کاهش و ضریب بازداری یون‌ها افزایش یافت. اورانیم دارای ضریب بازدارش کوچک‌تری نسبت به آهن بوده و غشاهای 2-PES و 1-NF  در 4 pH بیشینه‌ی گزینش‌گری اورانیم نسبت به آهن را دارند. اما، بیشینه‌ی گزینش‌گری 2-NF برابر با 2.97 و در 3 pH است. غشای 2-PES در فشار bar 10 دارای مقدار بیشینه‌ی %72.25 برای بازداری آهن بوده و مقدارهای بازداری آهن و اورانیم برای 1-NF در فشارهای مختلف نسبتاً ثابت بود (به ترتیب حدود %97 و %84). با افزایش فشار از 5 تا bar 20، بازدارش آهن توسط 2-NF ثابت مانده (حدود 97%) اما میزان بازدارش اورانیم توسط این غشا
از %84.06 به %70.46 کاهش می‌یابد. رفتار این غشاها در مقابل افزایش غلظت یون‌های آهن از 0.12 به mM 1 متفاوت است. بیشینه‌ی گزینش‌گری برای غشاهای 1-NF و 2-NF به ترتیب برابر با 43.71 و 13.59 بود که نشان می‌دهد 1-NF عملکرد خیلی مطلوبی دارد. به نظر می‌رسد فرایند نسبتاً جدید نانوفیلتراسیون دارای قابلیت خوبی در استفاده از آن برای جداسازی انتخابی اورانیم از آهن است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Performance of Commercially Available Nanofilter Membranes in Selective Separation of Uranium (VI) Ions from Iron (III)

نویسندگان [English]

  • M Ghasemi Torkabad
  • A. R Keshtkar
  • J Safdari

Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI

چکیده [English]

Performance of Three commercially available nanofilter membranes (PES-2 , NF-1 and NF-2) in terms of rejection, permeate flux, and membrane selectivity under a variety of operational conditions was evaluated for selective separation of uranium (VI) ions from iron (III). The membranes permeate fluxes were  decreased with an increase in the pH range of 3-6, while the rejection of ions was increased. Uranium rejection with these membranes was lower than iron rejection and the PES-2 and NF-1 membranes had the maximum membrane selectivity of iron over uranium at pH 4. The maximum membrane selectivity of NF-2, however, was 2.97 at pH 3. The PES-2 membrane had the maximum iron rejection of 72.25% at the pressure 10 bar. For NF-1 the rejection of iron and uranium was found to be relatively constant (about 97% and 84%, respectively) against increasing the pressure. As the pressure increased from 5 to 20 bar, iron rejection by NF-2 was remained constant (about 97%) but uranium rejection by this membrane was decreased from 84.06% to 70.46%. It was found that the effect of increasing the iron concentration from 0.12 to 1mM on the behavior of these membranes is  different. The maximum membrane selectivity of uranium over iron by the NF-1 and NF-2 membranes was 43.71 and 13.59, respectively, which showed that NF-1 has a very desirable performance. It seams that the relatively new process of nanofiltration has a good potential for selective separation of uranium from iron.

کلیدواژه‌ها [English]

  • Nanofilter Membranes
  • Separation
  • Uranium
  • Iron
[1] C.R. Edwards, A.J. Oliver, Uranium Processing: A Review of Current Methods and Technology, JOM, 52 (2000) 12-20.
 [2] E.S.A. Nouh, M. Amin, M. Gouda, A. Abd-Elmagid, Extraction of uranium(VI) from sulfate leach liquor after iron removal using manganese oxide coated zeolite, Journal of Environmental Chemical Engineering, 3 (2015) 523–528.
 [3] Uranium Extraction Technology, IAEA, Vienna, (1993) 380.
 [4] P.A. Riveros, The extraction of Fe(III) using cation-exchange carboxylic resins, Hydrometallurgy, 72 (2004) 279-290.
 [5] S. Cheraghpour, S.A. Milani, M. Salari, M. Kiaee, Separation of Fe (III) Ions from Acidic Leach Liquor of Metasummatite Saghand Ore by Anion Exchange Resins, Journal of Nuclear Science and Technology, 45 (2008) 28-32.
 [6] B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration, Desalination, 315 (2013) 2-17.
 [7] J. Tanninen, S. Platt, A. Weis, M. Nyström, Long-term acid resistance and selectivity of NF membranes in very acidic conditions, Journal of Membrane Science., 240 (2004) 11–18.
 [8] B. Van der Bruggena, M. Manttari, M. Nystrom, Drawbacks of applying nanofiltration and how to avoid them: A review, Separation and Purification Technology, 63 (2008) 251-263.
 [9] M. Ghasemi Torkabad, A.R. Keshtkar, S.J. Safdari, A. Zaheri, H. Sohbatzadeh, Investigation of Effect of Main Parameter in Nanofiltration Membrane Process for Uranium Ions Separation from Aqueous Solution, Journal of Nuclear Science and Technology, 79 (2017) 75-85.
 [10] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges, Water Research, 43 (2009) 2317-2348.
 [11] A. Favre-Reguillon, G. Lebuzit, D. Murat, J. Foos, C. Mansour, M. Draye, Selective removal of dissolved uranium in drinking water by nanofiltration, Water Research, 42 (2008) 1160-1166.
[12] P. Schmidt, T. Köse, P. Lutze, Characterisation of organic solvent nanofiltration membranes in multi-component mixtures: Membrane rejection maps and membrane selectivity maps for conceptual process design, Journal of Membrane Science, 429 (2013) 103-120.
 [13] F. Chang, W. Liu, X. Wang, Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions, Desalination, 334 (2014) 10–16.
 [14] H.M.A. Rossiter, M.C. Graham, A.I. Schäfer, Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater, Separation and Purification Technology, 71 (2010) 89-96.
 [15] A. Favre-Reguillon, G. Lebuzit, J. Foos, A. Guy, A. Sorin, M. Lemaire, M. Draye, Selective Rejection of Dissolved Uranium Carbonate from Seawater Using Cross-Flow Filtration Technology, Separation Science and Technology, 40 (2005) 623-631.
 [16] G.T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167 (2004) 369-376.
 [17] J. Fang, B. Deng, Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport, Journal of Membrane Science, 453 (2014) 42–51.
 [18] C.V. Gherasim, J. Cuhorka, P. Mikulášek, Analysis of lead(II) retention from single salt and binary aqueous solutions by apolyamide nanofiltration membrane: Experimental results and modelling, Journal of Membrane Science, 436 (2013) 132–144.
 [19] W. Zuo, G. Zhang, Q. Meng, H. Zhang, Characteristics and application of multiple membrane process in plating wastewater reutilization, Desalination, 222 (2008) 187–196.
 [20] C.V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination, 343 (2014) 67-74.
 [21] G. Artug, Modelling and Simulation of Nanofiltration Membranes, Cuvillier Verlag, Göttingen, (2007) 248.
 [22] Treatment of liquid effluent from uranium mines and mills, IAEA, (2004) 27-44.