نوع مقاله : مقاله پژوهشی
نویسندگان
1 باشگاه پژوهشگران جوان، دانشگاه آزاد اسلامی واحد ساوه، صندوق پستی: 366-39187، ساوه - ایران
2 گروه مواد پیشرفته، پژوهشکده مواد، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی ایران، صندوق پستی: 498-31485، کرج- ایران
3 دانشکده مهندسی و فنآوریهای نوین، دانشگاه صنایع و معادن ایران، صندوق پستی: 518-14395، تهران- ایران
4 دانشکده مهندسی و علم مواد، پژوهشکده علوم و فنآوری نانو، دانشگاه صنعتی شریف، صندوق پستی: 946-11365، تهران- ایران
کلیدواژهها
عنوان مقاله English
نویسندگان English
Chemical Vapor Synthesis (CVS) route was used for synthesis of titanium dioxide (TiO2) nanoparticles in hot-walled reactor at 800°C using TiCl4 as precursor. The effect of processing parameters e.g., temperature and amount of precursor on phase structure, size, purity, coagulation and agglomeration of nanoparticles were investigated in this respect. Also, the H2O effects on the size, crystallinity, phase transformation and purity of nanoparticles were studied. Comprehensive experimental observations were confirmed by transmission electron microscopy (TEM), X-ray diffraction analysis and TG-DTA results. The obtained results showed that by increasing the precursor amount and temperature, no phase transformation can be observed but the size, coagulation and agglomeration of titania nanoparticles increase. Also, the results showed that by introducing water vapor, the average particle sizes decrease saliently and no phase transformation and impurity were observed. Titanium dioxide nanoparticles can be used for synthesis of nanofluids. Nanofluids (nano-TiO2+water) as a cooling agent can be used for the enhanced economy and safety of the nuclear reactors.
کلیدواژهها English
10. L. Mao, Q. Li, H. Dang, Z. Zhang, “Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by sol–gel method,” Mater. Res. Bull. 40, 2, 201-208 (2005).
11. H.D. Jang, J. Jeong, “The effect of temperature on particle size in gas-phase production of TiO2,” Aerosol Sci. Technol, 23, 553–560 (1995).
12. I. Ahmad, S.S. Bhattacharya, “Effect of process parameters on the chemical vapour synthesis of nanocrystalline titania,” J. Phys. D: Appl. Phys, 41, 155313-155320 (2008).
13. K.K. Akurati, S.S. Bhattacharya, M. Winterer, H. Hahn, “Synthesis, characterization and sintering of nanocrystalline Titania powders produced by chemical vapour synthesis,” J. Phys. D: Appl. Phys, 39, 2248-2259 (2006).
14. S. Seifried, M. Winterer, H. Hahn, “Nanocrystalline titania films and particles by chemical vapor synthesis,” Chem. Vapor Depos, 6, 239-244 (2000).
15. S. Klein, M. Winterer, H. Hahn, “Reduced-pressure chemical vapor synthesis of nanocrystalline silicon carbide powders,”Chem. Vapor Depos, 4, 143-149 (1998).
16. M.L. Hitchman, J. Zhao, “The LPCVD of rutile at low temperature,” J. Phys. IV, 9, 357-364 (1999).
17. A. Kobata, K. Kusakabe, S. Marooka, “Growth and transformation of TiO2 crystallites in aerosol reactor,” AIChE. J. 37, 347-359 (1991).
18. K. Nakaso, T. Fujimoto, T. Seto, M. Shimada, K. Okuyama, M.M. Lunden, “Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering,” Aerosol Sci. Technol, 35, 929-947 (2001).
19. J.H. Yu, J.S. Lee, K.H. Ahn, “In situ characterization of TiO2 nanoparticle in chemical vapor condensation reactor,” Scr. Mater, 44, 2213-2217 (2001).
20. S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, S.V.R. Mastrangelo, “Kinetics of titanium[IV] chloride oxidation,” J. Am. Ceram. Soc, 73, 2158–2162 (1990).
21. B.D. Cullity, “Elements of X-ray diffraction, second edition,” Addison-Wesley Publishing Company Press, Massachusetts, United States (1978).