نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی، کدپستی: 1983969411، تهران ـ ایران

چکیده

در این پژوهش، عملکرد انتقال جرم ستون ضربه‌ای افقی نوع سینی‌دار در استخراج اورانیم از محلول فروشویی سولفاته بندرعباس توسط آلامین 336 با استفاده از مدل پراکندگی محوری مورد بررسی قرار گرفت. فاز آلی حاوی 6% حجمی استخراج‌کننده آلامین 336، 5% حجمی اصلاح‌کننده ایزودکانول و کروزن به­ عنوان رقیق‌کننده بود. محلول فروشویی بندرعباس حاوی سولفات و اورانیم با غلظت‌های M 22/0 و ppm 250 به ­عنوان فاز آبی استفاده شد. از مدل‌ اختلاط محوری به ­منظور تعیین پارامترهای انتقال جرم و مدل‌­سازی این سیستم استفاده شد. هم‌چنین اثر پارامترهای عملیاتی مؤثر ستون مانند شدت ضربه، دبی حجمی فازها بر پارامترهای انتقال جرم مانند ضرایب کلی حجمی انتقال جرم فاز پیوسته (Koca) و ضرایب پراکندگی محوری فاز پیوسته و پراکنده (Ec و Ed) نیز مورد بررسی قرار گرفتند. نتایج نشان داد که پارامترهای انتقال جرم ستون شدیداً وابسته به شدت ضربه و میزان آشفتگی سیستم می‌باشند. هم‌چنین عملکرد انتقال جرم این ستون برای استخراج اورانیم از محلول فروشویی سولفاته بالا می‌باشد. علاوه بر این روابط تجربی جدیدی براساس پارامترهای عملیاتی و مشخصات فیزیکی سیستم به روش آنالیز ابعادی به ­منظور پیش‌بینی پارامترهای انتقال جرم پیشنهاد شدند؛ این روابط با دقت بسیار بالایی مقادیر تجربی را در این سیستم پیش‌بینی می‌کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of mass transfer performance of uranium extraction from sulfate medium of Bandar Abbas with Alamine 336 in horizontal pulsed column by using axial dispersion model

نویسندگان [English]

  • F. Khanramaki 1 2
  • R. Torkaman 1
  • A.S. Shirani 2
  • J. Safdari 1

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

چکیده [English]

In this study, the mass transfer performance of the Horizontal pulsed sieve plate column for the extraction of uranium from Bandar Abbas sulfate leach solution with Alamine 336 was investigated using a dispersion model. The organic phase contained 6% (v/v) Alamine 336 as extractant and 5% (v/v) isodecanol as a modifier in kerosene as diluent. The sulfate solution of Bandar Abbas containing 0.22 M sulfate and 250 ppm Uranium was used as the aqueous phase. The axial dispersion model was used to determine the mass transfer parameters and modeling of this system. Also, the effect of operating parameters such as pulsation intensity, the rate of phases flow on the volumetric overall mass transfer parameters was investigated; namely total volumetric coefficients of continuous phase mass transfer (Koca) and axial scattering coefficients of continuous and scattered phase (Ec and Ed). The obtained results showed that the mass transfer parameters are strongly dependent on the pulse intensity and turbulence degree of the system. In addition, the mass transfer performance of this column is high for the uranium extraction from sulfate leach liquors. Moreover, the practical and novel correlations have been determined for prognostication of mass transfer parameters which are closely matched with the experimental results in the horizontal pulsed column.

کلیدواژه‌ها [English]

  • Horizontal Pulsed Column
  • Alamine 336
  • Sulfate leach liquor of Bandar Abbas
  • Mass Transfer
  • Modeling

1. J. Kumar, et al, A Brief Review on Solvent Extraction of Uranium from Acidic Solutions, Separation & Purification Reviews, 40, 77–125 (2011).

 

2. F. Habashi, A textbook of hydrometallurgy: Metallurgy extractive Québec, Enr., (1993).

 

3. F. Khanramaki, et al, Equilibrium and kinetics of uranium(VI) extraction from a sulfate leach liquor solution by Alamine 336using single drop technique, Chemical Engineering Research and Design, 125, 181-189 (2017).

 

4. J.E. Quinn, D. Wilkins, K.H. Soldenhoff, Solvent extraction of uranium from saline leach liquors using DEHPA/Alamine 336 mixed reagent, Hydrometallurgy, 134, 74–79 (2013).

 

5. G. Ramadevi, et al, Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent, J. Radioanal. Nucl. Chem., 294, 13-18 (2012).

 

6. J.D. Thornton, Science and Practice of Liquid–Liquid Extraction, New York, USA: Oxford University Press, 2, (1992).

 

7. T. Sato, The back-extraction of uranyl nitrate from tributyl phosphate solution, Journal Inorganic Nuclear Chemistry, 7, 147-149 (1958).

 

8. C.V. Ellison, Study of Half Pulse Column with a TBP System, Oak Ridge National Laboratory (ORNL-912), (1951).

 

9. M. Khajenoori, et al, Prediction of drop size distribution in a horizontal pulsed plate extraction column, Chemical Engineering and Processing, 92, 25–32 (2015).

 

10. M. Khajenoori, et al, Slip and Characteristic Velocities in a Horizontal Pulsed-Plate Extraction Column, Chem. Eng. Technol., 38, 1783-1792 (2015).

 

11. F. Panahinia, et al, Experimental investigation concerning the effect of mass transfer direction on mean drop size and holdup in a horizontal pulsed plate extraction column, RSC Advances, 7, 8908-8921 (2017).

 

12. F. Panahinia, et al, Modeling and simulation of a horizontal pulsed sieve-plate extraction column using axial dispersion model, Separation Science and Technology, 52, 73-81 (2017).

 

13. P. Amani, et al, Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model, Progress in Nuclear Energy, 98, 1-14 (2017).

 

14. L.D. Smoot, A.L. Babb, Mass Transfer Studies in a Pulsed Extraction Column. Longitudinal Concentration Profiles, Ind. Eng. Chem. Fundam., 1, 93-103 (1962).

 

15. A. Safari, Axial mixing and mass transfer investigation in a pulsed packed liquid–liquid extraction column using plug flow and axial dispersion models, Chemical Engineering Research and Design, 90, 93-200 (2012).

 

16. A.E. Ferreira,et al, Extraction of copper from acidic leach solution with Acorga M5640 using a pulsed sieve plate column, Hydrometallurgy, 104, 66–75 (2010).

 

17. S. Kagan, et al, Longitudinal mixing and its effects on mass transfer in pulsed-screen extractors, Int. Chem. Eng., 13,  217-225 (1973).

 

18. T. Miyauchi, H. Oya, Longitudinal dispersion in pulsed perforated-plate columns, AIChE J., 11,  395-406 (1965).

 

19. J.C. Godfrey, M.J. Slater, Liquid-liquid extraction equipment. Bradford: John Wiley & Sons Ltd, (1994).

 

20. W.J. Korchinsk, Q.M. Sheikh, Forward Mixing Model: Application to Pulsed Plate Extraction Column Operation in the Emulsion Region, Chemical Engineering Communications, 115, 95-115 (1992).

 

21. X. Tang, A dynamic interaction mass transfer model for simulating the mass transfer process in extraction columns, Computers and Chemical Engineering, 30,  978–988 (2006).

 

22. M.L.F. Gameiro, et al, Copper extraction from ammoniacal medium in a pulsed sieve-plate column with LIX 84-I, Journal of Hazardous Materials, 183, 165-175 (2010).

 

23. D. Bonam, et al, Liquid-liquid extraction in a rotating-spray column: removal of Cr(VI) by  Aliquat 336, Industrial & Engineering Chemistry Research, 48, 7687–7693 (20009).

 

24. F. Khanramaki, et al, Investigations on the complete removal of iron(III) interference on the uranium(VI) extraction from sulfate leach liquor using Alamine 336 in kerosene, Radiochim. Acta, 106, (2018).

 

25. A.J. Melnyk, Hydrodynamic Characteristics of a Horizontal Pulsed Solvent Extraction Column, Vol. Philosophy McMaster University Hamilton Ontario, Canada: A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor, (1989).

 

26. P.V. Danckwerts, Chemical Engineering Science Genie Chimique, Department of chemical Engineering, England, (1953).

 

27. J.C. Goebel, K. Booij, J.M.H. Fortuin, Axial Dispersion in Single Phase Flow In Pulsed Packed Columns, Chemical Engineering Science, 41, 3197-3203 (1986).

 

28. A.N.S. Mak, Axial Dispersion In Single Phase Flow In A Pulsed Packed Column Containing Structured Packing, Chemical Engineering and Science, 46,  819-826 (1991).

 

29. C. Jiao, S. Ma, Q. Song, Mass transfer characteristics in a standard pulsed sieve-plate extraction column, Energy Procedia, 39, 348-357 (2013).

 

30. R.L. Yadav, A.W. Patwardhan, Design aspects of pulsed sieve plate columns, Chemical Engineering Journal, 138, 389-415 (2008).

 

31. A. Kumar, S. Hartland, Correlations for prediction of mass transfer coefficients in single drop systems and liquid-liquid extraction columns, Chemical Engineering Research and Design, 77, 372-384 (1999).

 

32. G. Srinikethan, A. Prabhakar, Y.B.G. Varma, Axial dispersion in plate-pulsed columns, Bioprocess Eng., 2, 161-168 (1987).

 

33. A. Kumar, S. Hartland, Prediction of dispersed phase hold-up in pulsed perforated-plate extraction columns, Chem. Eng. Process. Process Intensif, 23, 41-59 (1988).

 

34. X. Tang, G. Luo, J. Wang, A dynamic forward mixing model for evaluating the mass transfer performances of an extraction column, Chem. Eng. Sci., 59, 4457-4466 (2004).

 

35. M. Asadollahzadeh, et al, Use of axial dispersion model for determination of Sherwood number and mass transfer coefficients in a perforated rotating disc contactor, Chin. J. Chem. Eng., 25, 53-61 (2017).

 

36. G.A. Sehmel, A.L. Babb, Longitudinal mixing studies in a pulsed extraction column, Ind. Eng. Chem. Process Des. Dev., 3, 210-214 (1964).

 

37. G.U. Din, et al, Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis, Appl. Radiat. Isot., 66, 1818-1824 (2008).